

MUFFAKHAM JAH COLLEGE OF
ENGINEERING & TECHNOLOGY

Banjara Hills Road No 3, Hyderabad

ELECTRICAL ENGINEERING

LABORATORY MANUAL

DIGITAL SIGNAL

IV/IV B.E I

MUFFAKHAM JAH COLLEGE OF
ENGINEERING & TECHNOLOGY

Banjara Hills Road No 3, Hyderabad- 34
www.mjcollege.ac.in

ELECTRICAL ENGINEERING DEPARTMENT

LABORATORY MANUAL

DIGITAL SIGNAL PROCESSING LAB

For

IV/IV B.E II SEM EEE/EIE

Prepared by

Mohd. Abdul Muqeet
 Assoc. Professor, EED

MUFFAKHAM JAH COLLEGE OF
ENGINEERING & TECHNOLOGY

DEPARTMENT

PROCESSING LAB

Digital Signal Processing Lab Manual

1

Prepared By: Mohd.Abdul Muqeet

WITH EFFECT FROM THE ACADEMIC YEAR 2013-2014

EE 481

DSP LAB

(COMMON TO EEE & IE)

Instruction 3 Periods per week

Duration of University Examination 3 Hours

University Examination 50 Marks

Sessional 25 Marks

1. Waveform generation -Square, Triangular and Trapezoidal.

2. Verification of Convolution Theorem-comparison Circular and

Linear Convolutions.

3. Computation of DFT, IDFT using Direct and FFT methods.

4. Verification of Sampling Theorem

5. Design of Butterworth and Chebyshev of LP & HP filters.

6. Design of LPF using rectangular and Hamming, Kaiser

Windows.

7. 16 bit Addition, Integer and fractional multiplication on 2407

DSP Trainer kit.

8. Generation of sine wave and square wave using DSP trainer

kit.

9. Response of Low pass and High pass filters using DSP trainer

kit.

10. Linear convolution using DSP trainer kit.

11. PWM Generation on DSP trainer kit.

12. Key pad interfacing with DSP.

13. LED interfacing with DSP.

14. Stepper Motor Control using DSP.

15. DC Motor 4- quadrant speed control using DSP.

16. Three phase 1M speed control using DSP.

17. Brushless DC Motor Control.

At least ten experiments should be completed in the semester

Digital Signal Processing Lab Manual

2

Prepared By: Mohd.Abdul Muqeet

Index

Sr.No Name of Experiment

Page

No.

1 Waveform generation -Square, Triangular and

Trapezoidal

10

2 Verification of Convolution Theorem-comparison

Circular and Linear Convolutions.

16

3 Computation of DFT, IDFT using Direct and FFT

methods

21

4 Verification of Sampling Theorem

23

5 Design of Butterworth and Chebyshev of LP & HP

filters.

26

6 Design of LPF using rectangular and Hamming,

Kaiser Windows

34

7 16 bit Addition, Integer and fractional multiplication

on DSP Trainer kit.

47

8 Generation of sine wave and square wave using DSP

trainer kit.

51

9 LED interfacing with DSP

54

10 DC Motor 4- quadrant speed control using DSP.

63

11 Three phase Induction Motor speed control using

DSP.

67

12 Brushless DC Motor Control using DSP Kit.

72

13 Linear Convolution with TMS320C6713 DSP Kit

81

14 Generation of Sine wave and square wave with

TMS320C6713 DSP Kit

84

15 Generation of response of Low pass and High Pass

Filters using DSP Trainer Kit

88

Digital Signal Processing Lab Manual

3

Prepared By: Mohd.Abdul Muqeet

Cycle -I

[1]. Waveform generation -Square, Triangular and Trapezoidal.

[2]. Verification of Convolution Theorem-comparison Circular and

Linear Convolutions.

[3]. Computation of DFT, IDFT using Direct and FFT methods.

[4]. Verification of Sampling Theorem

[5]. Design of Butterworth and Chebyshev of LP & HP filters.

[6]. Design of LPF using rectangular and Hamming, Kaiser

Windows.

Cycle –II

[7]. 16 bit Addition, Integer and fractional multiplication on DSP

Trainer kit.

[8]. Generation of sine wave and square wave using DSP trainer

kit.

[9]. LED interfacing with DSP.

[10]. DC Motor 4- quadrant speed control using DSP.

[11]. Three phase Induction Motor speed control using DSP.

[12]. Brushless DC Motor Control using DSP Kit.

[13]. Linear Convolution with TMS320C6713 DSP Kit

[14]. Generation of Sine wave and square wave with TMS320C6713

DSP Kit

[15]. Generation of Response of Low pass and High Pass Filters

using DSP Trainer Kit

Digital Signal Processing Lab Manual

4

Prepared By: Mohd.Abdul Muqeet

Cycle-I

Digital Signal Processing Lab Manual

5

Prepared By: Mohd.Abdul Muqeet

INTRODUCTION

MATLAB, which stands for MATrix LABoratory, is a state-of-the-art

mathematical software package for high performance numerical computation and

visualization provides an interactive environment with hundreds of built in functions

for technical computation, graphics and animation and is used extensively in both

academia and industry. It is an interactive program for numerical computation and

data visualization, which along with its programming capabilities provides a very

useful tool for almost all areas of science and engineering.

At its core ,MATLAB is essentially a set (a “toolbox”) of routines (called “m

files” or “mex files”) that sit on your computer and a window that allows you to create

new variables with names (e.g. voltage and time) and process those variables with any

of those routines (e.g. plot voltage against time, find the largest voltage, etc).

It also allows you to put a list of your processing requests together in a file and save

that combined list with a name so that you can run all of those commands in the same

order at some later time. Furthermore, it allows you to run such lists of commands

such that you pass in data.

MATLAB Windows:

MATLAB works with through these basic windows

Command Window
This is the main window .it is characterized by MATLAB command prompt

>> when you launch the application program MATLAB puts you in this window all

commands including those for user-written programs ,are typed in this window at the

MATLAB prompt

The Current Directory Window
The Current Directory window displays a current directory with a listing of its

contents. There is navigation capability for resetting the current directory to any

directory among those set in the path. This window is useful for finding the location

of particular files and scripts so that they can be edited, moved, renamed, deleted, etc.

The default current directory is the Work subdirectory of the original MATLAB

installation directory

The Command History Window
The Command History window, at the lower left in the default desktop,

contains a log of commands that have been executed within the Command window.

This is a convenient feature for tracking when developing or debugging programs or

to confirm that commands were executed in a particular sequence during a multistep

calculation from the command line.

Graphics Window
The output of all graphics commands typed in the command window are

flushed to the graphics or figure window, a separate gray window with white

background color the user can create as many windows as the system memory will

allow.

Edit Window
This is where you write edit, create and save your own programs in files called

M files.

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Input-output
MATLAB supports interactive computation taking the input from the screen

and flushing, the output to the screen. In addition it can read input files and write

output files

Data Type
The fundamental data

distinct data objects- integers, real numbers, matrices, character strings, structures and

cells. There is no need to declare variables as real or complex, MATLAB

automatically sets the variable to be real.

Dimensioning
Dimensioning is automatic in MAT

required for vectors or arrays .we can find the dimensions of an existing matrix or a

vector with the size and length commands.

Where to work in MATLAB?
 All programs and commands can be entered either in the

a) Command window

b) As an M file using MATLAB editor

Note: Save all M files in the folder 'work' in the current directory. Otherwise

you have to locate the file during compiling.

Typing quit in the command prompt>> quit, will close MATLAB Development

Environment.

For any clarification regarding plot etc, which are built in functions type help topic i.e.

help plot

Basic Instructions in MATLAB

1. T = 0: 1:10 This instruction indicates a vector T which as initial value 0 and

final value 10 with an increment of 1 Ther

Prepared By: Mohd.Abdul Muqeet

MATLAB supports interactive computation taking the input from the screen

and flushing, the output to the screen. In addition it can read input files and write

The fundamental data –type in MATLAB is the array. It encompasses severa

integers, real numbers, matrices, character strings, structures and

cells. There is no need to declare variables as real or complex, MATLAB

automatically sets the variable to be real.

Dimensioning is automatic in MATLAB. No dimension statements are

required for vectors or arrays .we can find the dimensions of an existing matrix or a

vector with the size and length commands.

Where to work in MATLAB?
All programs and commands can be entered either in the

b) As an M file using MATLAB editor

: Save all M files in the folder 'work' in the current directory. Otherwise

you have to locate the file during compiling.

Typing quit in the command prompt>> quit, will close MATLAB Development

For any clarification regarding plot etc, which are built in functions type help topic i.e.

MATLAB

This instruction indicates a vector T which as initial value 0 and

final value 10 with an increment of 1 Therefore

Lab Manual

6

MATLAB supports interactive computation taking the input from the screen

and flushing, the output to the screen. In addition it can read input files and write

type in MATLAB is the array. It encompasses several

integers, real numbers, matrices, character strings, structures and

cells. There is no need to declare variables as real or complex, MATLAB

LAB. No dimension statements are

required for vectors or arrays .we can find the dimensions of an existing matrix or a

: Save all M files in the folder 'work' in the current directory. Otherwise

Typing quit in the command prompt>> quit, will close MATLAB Development

For any clarification regarding plot etc, which are built in functions type help topic i.e.

This instruction indicates a vector T which as initial value 0 and

Digital Signal Processing Lab Manual

7

Prepared By: Mohd.Abdul Muqeet

T = [0 1 2 3 4 5 6 7 8 9 10]

2. F= 20: 1: 100
 F = [20 21 22 23 24 ……… 100]

3. T= 0:1/ pi: 1
 T= [0, 0.3183, 0.6366, 0.9549]

4. zeros (1, 3) The above instruction creates a vector of one row and three

columns whose values are zero Output= [0 0 0]

5. Transpose a vector
 Suppose T= [1 2 3],

 Then transpose
T’= 1

 2
 3

 6. Empty vector
Y = []

Y =

 []

6. Matrix Operation

a)If a = [1 2 3] b = [4 5 6]

a.*b = [4 10 18]
 b)If v = [0:2:8]

v = [0 2 4 6 8]

 v(1:3)
ans [0 2 4]

 v(1:2:4)

ans[0 4]

 c) A = [1 2 3; 3 4 5; 6 7 8]

 A =

1 2 3

3 4 5

6 7 8

 A(2,3)
 ans 5

 A(1:2,2:3)

 ans =

2 3

4 5

 A(:,2)

 ans =

2

4

7

 A(3,:)

 ans =

 6 7 8

Operations on vector and matrices in MATLAB

MATLAB utilizes the following arithmetic operators;

Digital Signal Processing Lab Manual

8

Prepared By: Mohd.Abdul Muqeet

+ Addition

- Subtraction

* Multiplication

/ Division

^ Power Operator

‘ transpose

Relational operators in MATLAB

Control Flow in MATLAB

1) Syntax of the for loop is shown below

for k = array

commands

end
The commands between for and end statements are executed for all values

stored in the array.

2) Syntax for the if loop

 if expression

commands

 end
This construction is used if there is one alternative only.

Two alternatives requires the following construction

 if expression

commands (evaluated if expression is true)

 else

commands (evaluated if expression is false)

 end

 3) Syntax of the switch-case construction is

switch expression (scalar or string)

case value1 (executes if expression evaluates to value1)

commands

case value2 (executes if expression evaluates to value2)

commands

...

otherwise

statements

 end
 Switch compares the input expression to each case value. Once the match is

found it executes the associated commands.

Basic Functions in MATLAB

Digital Signal Processing Lab Manual

9

Prepared By: Mohd.Abdul Muqeet

1) Plot Syntax: plot (x,y)

 Plots vector y versus vector x. If x or y is a matrix, then the vector is plotted

versus the rows or columns of the matrix.

 2) Stem Syntax: stem(Y)

 Discrete sequence or "stem" plot.

Stem (Y) plots the data sequence Y as stems from the x axis terminated with

circles for the data value. If Y is a matrix then each column is plotted as a

separate series.

3) Subplot Syntax: Subplot (2 2 1)

This function divides the figure window into rows and columns.

Subplot (2 2 1) divides the figure window into 2 rows and 2 columns 1

represent number of the figure.

Subplot (3 1 2) divides the figure window into 3 rows and 1 column 2

represent number of the figure

 4) Disp Syntax: disp(X)

Description: disp(X) displays an array, without printing the array name. If X

contains a text string, the string is displayed.Another way to display an array

on the screen is to type its name, but this prints a leading "X=," which is not

always desirable.Note that disp does not display empty arrays.

5) xlabel Syntax: xlabel('string') Description: xlabel('string') labels the x-axis

of the current axes.

6) ylabel Syntax : ylabel('string')

Description: ylabel('string') labels the y-axis of the current axes.

 7) Title Syntax : title('string')

Description: title('string') outputs the string at the top and in the center of the

current axes.

 8) grid on Syntax : grid on

 Description: grid on adds major grid lines to the current axes.

Digital Signal Processing Lab Manual

10

Prepared By: Mohd.Abdul Muqeet

 Experiment – 1

Aim :- To generate the waveform for the following signals using MATLAB.

1) Sine Wave signal

2) Cosine Wave signal

3) Saw Tooth Wave signal

4) Square Wave signal

5) Triangular Wave signal

6) Trapezoidal Wave signal

Apparatus: Matlab Software, PC

Algorithm:-
1) Enter the number of cycles, period and amplitude for respective waves.

2) Generate the signals using corresponding general formula.

3) Plot the graph.

Program:
1)% To generate a sinusoidal signal

clear all;

close all;clc;

N = input('enter the number of cycles....');

t = 0:0.05:N;

x = sin(2*pi*t);

subplot(121);

plot(t,x);

xlabel('---> time');

ylabel('---> amplitude');

title('analog sinusoidal signal');

subplot(122);

stem(t,x);

xlabel('---> time');

ylabel('---> amplitude');

title('discrete sinusoidal signal');

Results:

enter the number of cycles....3

Digital Signal Processing Lab Manual

11

Prepared By: Mohd.Abdul Muqeet

2)% To generate a Cosine Wave signal

clear all;

close all;

clc;

N = input('enter the number of cycles....');

t = 0:0.05:N;

x = cos(2*pi*t);

subplot(121);

plot(t,x);

xlabel('---> time');

ylabel('---> amplitude');

title('analog cosine signal');

subplot(122);

stem(t,x);

xlabel('---> time');

ylabel('---> amplitude');

title('discrete cosine signal');

Results:

enter the number of cycles....3

3) % To generate a triangular signal

clc;

clear all;

close all;

N = input('enter the number of cycles....');

M = input('enter the amplitude....');

t1 = 0:0.5:M;

t2 = M:-0.5:0;

t = [];

for i = 1:N,

 t = [t,t1,t2];

end;

subplot(211);

Digital Signal Processing Lab Manual

12

Prepared By: Mohd.Abdul Muqeet

plot(t); grid on;

xlabel('---> time');

ylabel('---> amplitude');

title('analog triangular signal');

subplot(212);

stem(t); grid on;

xlabel('---> time');

ylabel('---> amplitude');

title('discrete triangular signal');

Results:

enter the number of cycles....3

enter the amplitude....4

4) % To generate a saw tooth signal

clear all;

close all;

clc;

N = input('enter the number of cycles....');

t1 = 0:25;

t = [];

for i = 1:N,

 t = [t,t1];

end;

subplot(211);

plot(t); grid on;

xlabel('---> time');

ylabel('---> amplitude');

title('analog saw tooth signal');

subplot(212);

stem(t); grid on;

Digital Signal Processing Lab Manual

13

Prepared By: Mohd.Abdul Muqeet

xlabel('---> time');

ylabel('---> amplitude');

title('discrete saw tooth signal');

Results:

enter the number of cycles....3

5)% To generate a square signal

clear all;

close all; clc;

N = input('enter the number of cycles....');

M = input('enter the period....');

y = 0:0.001:2;

for j = 0:M/2:M*N;

 x = y;

 plot(j,x,'k'); grid on;

 hold on;

end;

for k = 0:M:M*N;

 x = k+y;

 m = 2;

 plot(x, m, 'k'); grid on;

 hold on;

end;

for k =2:M:M*N;

 x = k+y;

 m =0;

 plot(x, m, 'k'); grid on;

 hold on;

Digital Signal Processing Lab Manual

14

Prepared By: Mohd.Abdul Muqeet

end;

hold off;

axis([0 12 -0.5 2.5])

xlabel('---> time');

ylabel('---> amplitude');

title('Square signal');

Results:

enter the number of cycles....4
enter the period....4

5)% To generate a Trapezoidal signal

clear all;

close all;

clc;

N = input('enter the number of cycles....');

LN=1;

x=0:0.1:LN; % 'x' is meant for linear rise %

a=length(x);

y=ones(1,a+10); % 'y' is meant for constancy %

z=LN:-0.1:0; % 'z' is meant for linear fall %

y3=[x y z];

%y4=[y3 y3 y3 y3];

y4=[];

for i = 1:N,

 y4=[y4,y3];

end;

subplot(211);

plot(y4); grid on;

xlabel('---> time');

ylabel('---> amplitude');

title('analog trapezoidal signal');

Digital Signal Processing Lab Manual

15

Prepared By: Mohd.Abdul Muqeet

subplot(212);

stem(y4); grid on;

xlabel('---> time');

ylabel('---> amplitude');

title('discrete trapezoidal signal');

Results:

enter the number of cycles....3

Discussions on results:

Thus different waveforms have been generated in Matlab and plotted with respect to

time.

By performing the experimentation the student will be to

1. Discuss the effect of change in number of cycles on waveform.

2. Discuss the effect of change in time duration on the waveform

3. Discuss the application and significance of each waveform in digital signal

processing.

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Aim: Write a Matlab program to

and Linear Convolutions.

a) Write a Matlab program to

Apparatus: Matlab Software, PC

Theory:

The mathematical definition of convolution in discrete time domain

where x[n] is input signal,

convolution. Here we multiply the terms of

and add them up.

In this equation, x(k), h(n

system at time n. Here one of the input is shifted in time by a value every time it is

multiplied with the other input signal. Linear Convolution is quite often used as a

method of implementing filters of various types.

Algorithm:
1) Give input sequence x[n].

2) Give impulse respo

3) Find the convolution y[n] using the matlab command CONV.

4) Plot x[n],h[n],y[n].

Program:

% MATLAB program for linear convolution

clc;

clear all;

close all;

disp('linear convolution program'

x=input('enter i/p x(n):'

m=length(x);

h=input('enter i/p h(n):'

n=length(h);

x=[x,zeros(1,n)];

subplot(2,2,1), stem(x);

title('i/p sequence x(n)is:'

xlabel('---->n');

ylabel('---->amplitude'

h=[h,zeros(1,m)];

subplot(2,2,2), stem(h);

title('i/p sequence h(n)is:'

xlabel('---->n');

ylabel('---->amplitude'

disp('convolution of x(n) & h(n) is y(n):'

y=zeros(1,m+n-1);

for i=1:m+n-1

Prepared By: Mohd.Abdul Muqeet

Experiment – 2

Write a Matlab program to verify Convolution Theorem-comparison

Write a Matlab program to implement and verify Linear Convolution

Matlab Software, PC

The mathematical definition of convolution in discrete time domain

is input signal, h[n] is impulse response, and y[n] is output. * denotes

convolution. Here we multiply the terms of x[k] by the terms of a time

In this equation, x(k), h(n-k) and y(n) represent the input to and output from the

re one of the input is shifted in time by a value every time it is

multiplied with the other input signal. Linear Convolution is quite often used as a

method of implementing filters of various types.

Give input sequence x[n].

Give impulse response sequence h[n].

Find the convolution y[n] using the matlab command CONV.

Plot x[n],h[n],y[n].

% MATLAB program for linear convolution

'linear convolution program');

'enter i/p x(n):');

'enter i/p h(n):');

subplot(2,2,1), stem(x);

'i/p sequence x(n)is:');

>amplitude');grid;

subplot(2,2,2), stem(h);

'i/p sequence h(n)is:');

>amplitude');grid;

'convolution of x(n) & h(n) is y(n):');

Lab Manual

16

comparison Circular

Linear Convolution.

The mathematical definition of convolution in discrete time domain

is output. * denotes

by the terms of a time-shifted h[n]

k) and y(n) represent the input to and output from the

re one of the input is shifted in time by a value every time it is

multiplied with the other input signal. Linear Convolution is quite often used as a

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

y(i)=0;

for j=1:m+n-1

if(j<i+1)

y(i)=y(i)+x(j)*h(i

end

end

end

y

subplot(2,2,[3,4]),stem(y);

title('convolution of x(n) & h(n) is y(n):'

xlabel('---->n');

ylabel('---->amplitude'

Results:

linear convolution program
enter i/p x(n):[1 2 3 4 5]
enter i/p h(n):[1 2]
convolution of x(n) & h(n) is y(n):

y =

 1 4 7 10 13 10

Prepared By: Mohd.Abdul Muqeet

y(i)=y(i)+x(j)*h(i-j+1);

subplot(2,2,[3,4]),stem(y);

'convolution of x(n) & h(n) is y(n):');

>amplitude');grid;

linear convolution program
enter i/p x(n):[1 2 3 4 5]
enter i/p h(n):[1 2]
convolution of x(n) & h(n) is y(n):

1 4 7 10 13 10

Lab Manual

17

Digital Signal Processing Lab Manual

18

Prepared By: Mohd.Abdul Muqeet

b) Write a Matlab program to implement and verify Circular convolution of two

given sequences.

Apparatus: Matlab Software, PC

Theory:
Circular convolution is another way of finding the convolution sum of two

input signals. It resembles the linear convolution, except that the sample values of one

of the input signals is folded and right shifted before the convolution sum is found.

Also note that circular convolution could also be found by taking the DFT of the two

input signals and finding the product of the two frequency domain signals. The

Inverse DFT of the product would give the output of the signal in the time domain

which is the circular convolution output. The two input signals could have been of

varying sample lengths. But we take the DFT of higher point, which ever signals

levels to. For eg. If one of the signal is of length 256 and the other spans 51 samples,

then we could only take 256 point DFT. So the output of IDFT would be containing

256 samples instead of 306 samples, which follows N1+N2 – 1 where N1 & N2 are

the lengths 256 and 51 respectively of the two inputs. Thus the output which should

have been 306 samples long is fitted into 256 samples. The 256 points end up being a

distorted version of the correct signal. This process is called circular convolution.

Circular convolution is explained using the following example.

The two sequences are

x1 (n) = {2,1,2,1}

x2 (n) = {1,2,3,4 }

Each sequence consists of four nonzero points. For purpose of illustrating the

operations involved in circular convolution it is desirable to graph each sequence as

points on a circle. Thus the sequences x1 (n) and x2 (n) are graphed as illustrated in

the fig.We note that the sequences are graphed in a counterclockwise direction on a

circle.This stablishes the reference direction in rotating one of sequences relative to

the other. Now, y (m) is obtained by circularly convolving x (n) with h (n).

Algorithm:

1) Give input sequence x[n].

2) Give impulse response sequence h[n].

3) Find the Circular Convolution y[n] using the DFT method.

4) Plot x[n],h[n],y[n].

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Program:
clc;

clear all;

close all;

disp(‘Circular convolution program'

x=input('enter i/p x(n):'

m=length(x);

h=input('enter i/p h(n):'

n=length(h);

subplot(2,2,1), stem(x);

title('i/p sequence x(n)is:'

xlabel('---->n');

ylabel('---->amplitude'

subplot(2,2,2), stem(h);

title('i/p sequence h(n)is:'

xlabel('---->n');

ylabel('---->amplitude'

disp('circular convolution of x(n) & h(n) is y(n):'

y1=fft(x,n);

y2=fft(h,n);

y3=y1.*y2;

Prepared By: Mohd.Abdul Muqeet

‘Circular convolution program');

'enter i/p x(n):');

'enter i/p h(n):');

subplot(2,2,1), stem(x);

'i/p sequence x(n)is:');

>amplitude');grid;

subplot(2,2,2), stem(h);

'i/p sequence h(n)is:');

>amplitude');grid;

'circular convolution of x(n) & h(n) is y(n):'

Lab Manual

19

'circular convolution of x(n) & h(n) is y(n):');

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

y=ifft(y3,n);

y

subplot(2,2,[3,4]),stem(y);

title('circular convolution of x(n) & h(n) is y(n):'

xlabel('---->n');

ylabel('---->amplitude'

Result:

Circular convolution program
enter i/p x(n):[1 2 3 4]
enter i/p h(n):[4 3 2 1]
circular convolution of x(n) & h(n)

y =

 24 22 24 30

Discussions on results:

Thus the Linear convolution and circular convolution for discrete time signals are

obtained mathematically and graphically .Through this experiment student will be

able to

1) Discuss the effect on results if zero padding is used in the program.

2) Discuss the effect on results if zero padding is not used in the program.

3) Discuss the results in obtaining the circular convolution without using

frequency domain technique.

4) Discuss the difference

Prepared By: Mohd.Abdul Muqeet

subplot(2,2,[3,4]),stem(y);

'circular convolution of x(n) & h(n) is y(n):'

>amplitude');grid;

Circular convolution program
enter i/p x(n):[1 2 3 4]
enter i/p h(n):[4 3 2 1]
circular convolution of x(n) & h(n) is y(n):

24 22 24 30

Thus the Linear convolution and circular convolution for discrete time signals are

obtained mathematically and graphically .Through this experiment student will be

on results if zero padding is used in the program.

Discuss the effect on results if zero padding is not used in the program.

Discuss the results in obtaining the circular convolution without using

frequency domain technique.

Discuss the difference between linear convolution and circular convolution.

Lab Manual

20

'circular convolution of x(n) & h(n) is y(n):');

Thus the Linear convolution and circular convolution for discrete time signals are

obtained mathematically and graphically .Through this experiment student will be

on results if zero padding is used in the program.

Discuss the effect on results if zero padding is not used in the program.

Discuss the results in obtaining the circular convolution without using

between linear convolution and circular convolution.

Digital Signal Processing Lab Manual

21

Prepared By: Mohd.Abdul Muqeet

Experiment – 3

Aim: Write a Matlab program for computation of DFT and IDFT using Direct and

FFT method.

Apparatus: Matlab Software, PC

Theory:

DFT:
Discrete Fourier Transform (DFT) is used for performing frequency analysis of

discrete time signals. DFT gives a discrete frequency domain representation whereas the

other transforms are continuous in frequency domain. The N point DFT of discrete time

signal x[n] is given by the equation

The inverse DFT allows us to recover the sequence x[n] from the frequency samples

FFT:

A fast Fourier transform (FFT) is an efficient algorithm to compute the discrete

Fourier transform (DFT) and its inverse. FFTs are of great importance to a wide variety of

applications, from digital signal processing and solving partial differential equations to

algorithms for quick multiplication of large integers. Evaluating the sums of DFT directly

would take O(N 2) arithmetical operations. An FFT is an algorithm to compute the same

result in only O(N log N) operations. In general, such algorithms depend upon the

factorization of N, but there are FFTs with O(N log N) complexity for all N, even for

prime N. Since the inverse DFT is the same as the DFT, but with the opposite sign in the

exponent and a 1/N factor, any FFT algorithm can easily be adapted for it as well.

Algorithm:

1) Get the input sequence

2) Find the DFT of the input sequence using direct equation of DFT.

3) Find the IDFT using the direct equation.

4) Find the FFT of the input sequence using MATLAB function.

5) Find the IFFT of the input sequence using MATLAB function.

4) Display the above outputs using stem function.

Program:
%********** Direct DFT ***********

clc;close all;clear all;

xn=input('enter 8 inputs');

N=length(xn);

n=0:N-1;

k=0:N-1;

wn=exp((-1i*2*pi*n'*k)/N);

xf=wn*xn';

subplot(2,2,1);
stem(abs(xf));

title('dft magnitude respone');
ylabel('magnitude');

xlabel('frequncy');

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

% ******* Direct IDFT

WN=exp((1i*2*pi*n'*k)/N);

pn=WN*xf/N;

subplot(2,2,2);

stem(abs(pn));

title('idft magnitude respone'

ylabel('magnitude');
xlabel('time');

%******* FFT Method

xp=fft(xn,N);
subplot(2,2,3);

stem(abs(xp));

title('fft magnitude respone'

ylabel('magnitude');

xlabel('frequncy');

%******** IFFT method
xw=ifft(xp,N);

subplot(2,2,4);

stem(abs(xw));

title('ifft magnitude respone'

ylabel('magnitude');
xlabel('time');

Results:
enter 8 inputs[1 2 3 4 5 6 7 8]

Discussions on results:
Thus from the results students will be able to

1. Discuss that the Fourier transform of a discrete time signal is also called as

Signal Spectrum.

2. Discuss the changes in the results due to more number of inputs in the given

sequences in finding the DFT and FFT.

3. Discuss that FFT performs faster and take less computational time compared

to DFT.

Prepared By: Mohd.Abdul Muqeet

IDFT **********

WN=exp((1i*2*pi*n'*k)/N);

'idft magnitude respone');

);

ethod**********

'fft magnitude respone');

);

);

method *********

'ifft magnitude respone');

);

enter 8 inputs[1 2 3 4 5 6 7 8]

Thus from the results students will be able to

Discuss that the Fourier transform of a discrete time signal is also called as

Discuss the changes in the results due to more number of inputs in the given

n finding the DFT and FFT.

Discuss that FFT performs faster and take less computational time compared

Lab Manual

22

Discuss that the Fourier transform of a discrete time signal is also called as

Discuss the changes in the results due to more number of inputs in the given

Discuss that FFT performs faster and take less computational time compared

Digital Signal Processing Lab Manual

23

Prepared By: Mohd.Abdul Muqeet

Experiment – 4

Aim: Write a Matlab program to verify Sampling Theorem

Apparatus: Matlab Software, PC

Theory:

Sampling Theorem: The sampling theorem, attributed to Nyquist, Shannon,

Kotelnikov and Whittaker, is useful when calculating the sampling frequency required

for use in the Analog-to-Digital converter.

The theorem states that a band limited signal can be reconstructed exactly if it is

sampled at a rate at least twice the maximum frequency component in it.

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly

from its samples it has to be sampled at a rate fs=2fm. The minimum required

sampling rate fs = 2fm is called Nyquist rate.

Sampling is also a process of converting a continuous time signal (analog signal) x(t)

into a d i scre t e t ime s ignal x [n] ,which i s r ep resent ed as a sequence

of numbers . (A/D Converter)

Converting back x[n] into analog (resulting in) x(t) is the process of

reconstruction.(D/A Converter)

Algorithm:

1) Input the desired frequency mf (for which sampling theorem is to be verified)

2) Generate the cosine wave, i.e a continuous-time signal given mathematically

as, () cos(2)mx t f tπ= where f represents the frequency and t the time.

3) Generate the discrete-time signals for Undersampling, Nyquist sampling

andoversampling conditions.

oversampled & under sampled conditions after sampling at instants n1, n2,

n3 which are given as, ,.

a. To do this for under sampling, choose sampling frequency

fs1<2*fm.For this sampling rate T1=1/fs1,

b. For Nyquist Sampling, choose sampling frequency fs2=2*fm.For

this sampling rate T2=1/fs2.

c. For Over Sampling, choose sampling frequency fs2>fd.

4) Plot the waveforms and hence prove sampling theorem.

Program:

clc;

clear all;

%define analog signal for comparison

t=-100:01:100;

fm=0.02;

x=cos(2*pi*t*fm);

subplot(2,2,1);

plot(t,x);

xlabel('time in sec');

ylabel('x(t)');

title('continuous time signal');

Digital Signal Processing Lab Manual

24

Prepared By: Mohd.Abdul Muqeet

%simulate condition for undersamplingi.e.,fs1<2*fm

fs1=0.02;

n=-2:2;

x1=cos(2*pi*fm*n/fs1);

subplot(2,2,2);

stem(n,x1);

hold on

subplot(2,2,2);

plot(n,x1,':');

title('discrete time signal x(n) with fs<2fm');

xlabel('n');

ylabel('x(n)');

%condition for Nyquist plot

fs2=0.04;

n1=-4:4;

x2=cos(2*pi*fm*n1/fs2);

subplot(2,2,3);

stem(n1,x2);

hold on

subplot(2,2,3);

plot(n1,x2,':');

title('discrete time signal x(n) with fs>2fm');

xlabel('n');

ylabel('x(n)');

%condition for oversampling

n2=-50:50;

fs3=0.5;

x3=cos(2*pi*fm*n2/fs3);

subplot(2,2,4);

stem(n2,x3);

hold on

subplot(2,2,4);

plot(n2,x3,':');

xlabel('n');

ylabel('x(n)');

title('discrete time signal x(n) with fs=2fm');

Results:

Digital Signal Processing Lab Manual

25

Prepared By: Mohd.Abdul Muqeet

Discussions on results

This experiment verifies the sampling theorem in Matlab for undersampling, Nyquist

sampling and oversampling.

Thus from the results students will be able to

1) Discuss the effect of undersampling for the given signal

2) Discuss the effect of Nyquist sampling for the given signal

3) Discuss the effect of oversampling for the given signal.

Digital Signal Processing Lab Manual

26

Prepared By: Mohd.Abdul Muqeet

Experiment – 5

Aim: -To Design and generate IIR Butterworth/ Chebyshev LP/HP Filter using

MATLAB

Apparatus Required: - MATLAB Software, PC

Theory:
The Digital Filter Design problem involves the determination of a set of filter

coefficients to meet a set of design specifications. These specifications typically

consist of the width of the passband and the corresponding gain, the width of the

stopband(s) and the attenuation therein; the band edge frequencies (which give an

indication of the transition band) and the peak ripple tolerable in the passband and

stopband(s).

The design of IIR filters is closely related to the design of analog filters, which

is a widely studied topic. An analog filter is usually designed and a transformation is

carried out into the digital domain. Two transformations exist – the impulse invariant

transformation and the bilinear transformation.

Analog to Digital Domain Mapping Techniques
Digital Filters are designed by using the values of both the past outputs and the

present input, an operation brought about by convolution. If such a filter is subjected

to an impulse then its output need not necessarily become zero. The impulse response

of such a filter can be infinite in duration. Such a filter is called an Infinite Impulse

Response filter or IIR filter. The infinite impulse response of such a filter implies the

ability of the filter to have an infinite impulse response. This indicates that the system

is prone to feedback and instability.

The experiment studies two different types of IIR filters Butterworth Filter, and

Chebyschev I type Filters.

IIR filters are designed essentially by the Impulse Invariance or the Bilinear

Transformation method.

1) Impulse Invariance
This procedure involves choosing the response of the digital filter as an equi-

spaced sampled version of the analog filter.

1. Decide upon the desired frequency response

2. Design an appropriate analogue filter

3. Calculate the impulse response of this analogue filter

4. Sample the analogue filter's impulse response

5. Use the result as the filter coefficients

2) Bilinear Transformation:

The Bilinear Transformation method overcomes the effect of aliasing that is

caused to due the analog frequency response containing components at or beyond the

Nyquist Frequency. The bilinear transform is a method of compressing the infinite,

straight analogue frequency axis to a finite one long enough to wrap around the unit

circle once only. This is also sometimes called frequency warping. This introduces a

distortion in the frequency. This is undone by pre-warping the critical frequencies of

the analog filter (cut-off frequency, center frequency) such that when the analog filter

is transformed into the digital filter, the designed digital filter will meet the desired

specifications.

Digital Signal Processing Lab Manual

27

Prepared By: Mohd.Abdul Muqeet

Filter Types

Butterworth Filters
Butterworth filters are causal in nature and of various orders, the lowest order

being the best (shortest) in the time domain, and the higher orders being better in the

frequency domain. Butterworth or maximally flat filters have a monotonic amplitude

frequency response which is maximally flat at zero frequency response and the

amplitude frequency response decreases logarithmically with increasing frequency.

A Butterworth filter is characterized by its magnitude frequency response,

1

2
2

1
| () |

1 () N

c

H jΩ =

 Ω
+ 

Ω 

Where N is the order of the filter and Ωc is defined as the cutoff frequency where the

filter magnitude is 1/√2 times the dc gain (Ω=0).

Chebyshev Filters
Chebyshev filters are equiripple in either the passband or stopband. Hence the

magnitude response oscillates between the permitted minimum and maximum values

in the band a number of times depending upon the order of filters. There are two types

of chebyshev filters. The chebyshev I filter is equiripple in passband and monotonic in

the stopband, where as chebyshev II is just the opposite.

The Chebyshev low-pass filter has a magnitude response given by

()
1

2 2 2| | 1 ()
N

c

H j Tε

−
 Ω

Ω = + 
Ω 

where є is a parameter related to the ripple present in the passband

TN(x) is given by

()
1

1

cos(cos) | | 1,

cos(cosh) | | 1,
N

N x for x passband
C x

N x for x stopband

−

−

 ≤ 
=  

≤  

The magnitude response has equiripple pass band and maximally flat stop band. By

increasing the filter order N, the Chebyshev response approximates the ideal response.

The phase response of the Chebyshev filter is more non-linear than the Butter worth

filter for a given filter length N.

Algorithm:

1) Enter the pass band ripple (rp) and stop band ripple (rs).

2) Enter the pass band frequency (wp) and stop band frequency (ws).

3) Get the sampling frequency (fs).

4) Calculate normalized pass band frequency, and normalized stop band frequency w1

and w2 respectively.

 w1 = 2 * wp /fs

 w2 = 2 * ws /fs

5) Make use of the following function to calculate order of filter

Butterworth filter order

 [n,wn]=buttord(w1,w2,rp,rs)

Digital Signal Processing Lab Manual

28

Prepared By: Mohd.Abdul Muqeet

Chebyshev filter order

 [n,wn]=cheb1ord(w1,w2,rp,rs)

6) Design an nth order digital lowpass Butterworth or Chebyshev filter using the

following statements.

Butterworth filter

[b, a]=butter (n, wn)

 Chebyshev filter

 [b,a]=cheby1(n,0.5,wn)

 OR
Design an nth order digital high pass Butterworth or Chebyshev filter using the

following statement.

Butterworth filter

 [b,a]=butter (n, wn,’high’)

 Chebyshev filter

 [b,a]=cheby1 (n, 0.5, wn,'high')

7) Find the digital frequency response of the filter by using ‘freqz()’ function

[H,w]=freqz(b,a,512,fs)

8) Calculate the magnitude of the frequency response in decibels (dB)

 mag=20*log10 (abs (H))

9) Plot the magnitude response [magnitude in dB Vs normalized frequency (Hz]]

10) Calculate the phase response using an = angle (H)

11) Plot the phase response [phase in radians Vs normalized frequency (Hz)].

Program:

% IIR filters

clc; clear all; close all;

warning off;

disp('enter the IIR filter design specifications');

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;%normalized pass band frequency

w2=2*ws/fs;%normalized stop band frequency

[n,wn]=buttord(w1,w2,rp,rs);% Find the order n and cut-

off frequency

ch=input('give type of filter 1:LPF,2:HPF');

switch ch

case 1

 disp('Frequency response of Butterworth IIR LPF is:');

 [b,a]=butter(n,wn); % Find the filter coefficient of LPF

 [H,w]=freqz(b,a,512,fs);% to get the transfer function

of the filter

 mag=20*log10(abs(H));

 phase=angle(H);

 subplot(211);

 plot(w,mag);grid on;

 ylabel('--> Magnitude in dB');

 xlabel('--> Normalized frequency in Hz');

Digital Signal Processing Lab Manual

29

Prepared By: Mohd.Abdul Muqeet

 title('Magnitude Response of the desired Butterworh

LPF');

subplot(212);

plot(w,phase);grid on;

 ylabel('--> Phase in radians');

 xlabel('--> Normalized frequency in Hz');

 title('Phase Response of the desired Butterworh LPF');

case 2

 disp('Frequency response of IIR Butterworth HPF is:');

 [b,a]=butter(n,wn,'high'); % Find the filter co-

efficients of HPF

 [H,w]=freqz(b,a,512,fs);% to get the transfer function

of the filter

 mag=20*log10(abs(H));

 phase=angle(H);

 subplot(211);

 plot(w,mag);grid on;

 ylabel('--> Magnitude in dB');

 xlabel('--> Normalized frequency in Hz');

 title('Magnitude Response of the desired Butterworh

HPF');

 subplot(212);

 plot(w,phase);grid on;

 ylabel('--> Phase in radians');

 xlabel('--> Normalized frequency in Hz');

 title('Phase Response of the desired Butterworh HPF');

end

Results:

enter the IIR filter design specifications
enter the passband ripple 0.15
enter the stopband ripple 60
enter the passband freq 1500
enter the stopband freq 3000
enter the sampling freq 7000
give type of filter 1:LPF,2:HPF
1
Frequency response of Butterworth IIR LPF is:

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

enter the IIR filter design specifications
enter the passband ripple 0.15
enter the stopband ripple 60
enter the passband freq 1500
enter the stopband freq 3000
enter the sampling freq 7000
give type of filter 1:LPF,2:HPF
2
Frequency response of Butterworth IIR HPF is

Prepared By: Mohd.Abdul Muqeet

IIR HIGH PASS FILTER

enter the IIR filter design specifications
enter the passband ripple 0.15
enter the stopband ripple 60
enter the passband freq 1500
enter the stopband freq 3000
enter the sampling freq 7000
give type of filter 1:LPF,2:HPF

Frequency response of Butterworth IIR HPF is:

Lab Manual

30

Digital Signal Processing Lab Manual

31

Prepared By: Mohd.Abdul Muqeet

%To design a Chebyshev (Type-I) Low/High Pass Filter for the

given specifications

clc; clear all; close all;

disp('enter the IIR filter design specifications');

rp=input('enter the passband ripple');

rs=input('enter the stopband ripple');
wp=input('enter the passband freq');

ws=input('enter the stopband freq');

fs=input('enter the sampling freq');

w1=2*wp/fs;%to get normalized pass band frequency

w2=2*ws/fs;% to get normalized stop band frequency

ch=input('give type of filter 1:LPF,2:HPF');

 % to get the order and cut-off frequency of the filter

[n,wn]=cheb1ord(w1,w2,rp,rs);

switch ch

 case 1

disp('Frequency response of Chebyshev IIR LPF is:');

 [b,a]=cheby1(n,0.5,wn);% to get the filter coefficients

 % to get the transfer function of the filter

 [H,w]=freqz(b,a,512,fs);

 mag=20*log10(abs(H));
 phase=angle(H);

 subplot(211);

 plot(w,mag);grid on;

 ylabel('--> Magnitude in dB');

 xlabel('--> Normalized frequency in Hz');

 title('Magnitude Response of the desired Chebyshev Type -I)

LPF');
 subplot(212);

 plot(w,phase);grid on;

 ylabel('--> Phase in radians');

 xlabel('--> Normalized frequency in Hz');

 title('Phase Response of the desired Chebyshev(Type-I)LPF');

 case 2
 disp('Frequency response of Chebyshev IIR HPF is:');

 % to get the filter coefficients

 [b,a]=cheby1(n,0.5,wn,'high');

 % to get the transfer function of the filter

 [H,w]=freqz(b,a,512,fs);

 mag=20*log10(abs(H));
 phase=angle(H);

 subplot(211);

 plot(w,mag);grid on;

 ylabel('--> Magnitude in dB');

 xlabel('--> Normalized frequency in Hz');

 title('Magnitude Response of the desired Chebyshev(Type-

I)HPF');
 subplot(212);

 plot(w,phase);grid on;

 ylabel('--> Phase in radians');

 xlabel('--> Normalized frequency in Hz');

 title('Phase Response of the desired Chebyshev(Type-I)HPF');
end

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Results:

enter the IIR filter design specifications

enter the passband ripple

enter the stopband ripple

enter the passband freq

enter the stopband freq

enter the sampling freq

give type of filter 1:LPF,2:HPF

1

Frequency response of Chebyshev IIR LPF is:

Result:

enter the IIR filter design

enter the passband ripple

enter the stopband ripple

enter the passband freq

enter the stopband freq

enter the sampling freq

give type of filter 1:LPF,2:HPF

2

Frequency response of Chebyshev IIR HPF is:

Prepared By: Mohd.Abdul Muqeet

enter the IIR filter design specifications

enter the passband ripple 0.15

enter the stopband ripple 60

enter the passband freq 1500

enter the stopband freq 3000

enter the sampling freq 7000

give type of filter 1:LPF,2:HPF

Frequency response of Chebyshev IIR LPF is:

High Pass Filter

enter the IIR filter design specifications

enter the passband ripple 0.15

enter the stopband ripple 60

enter the passband freq 1500

enter the stopband freq 3000

enter the sampling freq 7000

give type of filter 1:LPF,2:HPF

Frequency response of Chebyshev IIR HPF is:

Lab Manual

32

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Discussions on results:

By this experiment we have studied the LP/HP IIR digital filter designing.

From the obtained results the students will be able to

1) Discuss the effect of order of the filer on magnitude response.

2) Discuss the effect of variation in

frequency, stop band frequency and sa

designing the IIR Butterworth digital filter.

3) Discuss the effect of variation in

frequency, stop band frequency and sa

designing the IIR Chebyshev digital filter.

Prepared By: Mohd.Abdul Muqeet

By this experiment we have studied the LP/HP IIR digital filter designing.

From the obtained results the students will be able to

Discuss the effect of order of the filer on magnitude response.

Discuss the effect of variation in pass band ripple, stop band ripple, pass band

frequency, stop band frequency and sampling frequency respectively in

designing the IIR Butterworth digital filter.

Discuss the effect of variation in pass band ripple, stop band ripple, pass band

frequency, stop band frequency and sampling frequency respectively in

designing the IIR Chebyshev digital filter.

Lab Manual

33

By this experiment we have studied the LP/HP IIR digital filter designing.

pass band ripple, stop band ripple, pass band

mpling frequency respectively in

and ripple, pass band

mpling frequency respectively in

Digital Signal Processing Lab Manual

34

Prepared By: Mohd.Abdul Muqeet

Experiment – 6

Aim: - Design and implementation of FIR Filter (LP/HP) to meet given specifications

Using Windowing technique

a. Rectangular window

b. Hamming window

c. Kaiser window

Apparatus: Matlab Software, PC

Theory:
A linear-phase is required throughout the passband of the filter to preserve the

shape of the given signal in the passband. A causal IIR filter cannot give linear-phase

characteristics and only special types of FIR filters that exhibit center symmetry in its

impulse response give the linear-space. A Finite Impulse Response (FIR) filter is a

discrete linear time-invariant system whose output is based on the weighted

summation of a finite number of past inputs.

A zero-phase frequency response of an ideal filter is given as

1, ,
()

0, .

cj

LP

c

H e ω
ω ω

ω ω π

 ≤
= 

< ≤

Hence time domain impulse response is

()
sin()1

[] ..
2

j j k c
d d

c

k
h k H e e d

k

π
ω ω

π

ω
ω α

π ω
−

= = =∫

so the impulse response is doubly infinite, not absolutely summable, and therefore

unrealizable.

By setting all impulse response coefficient outside the range

equal to zero, we arrival at a finite-length noncausal approximation of length

which when shifted to the right yield the coefficients of a causal FIR lowpass filter:

Gibbs phenomenon

The causal FIR filter obtained by simply truncating the impulse response coefficients

of the ideal filters exhibit an oscillatory behavior in their respective magnitude

responses which is more commonly referred to as the Gibbs phenomenon

Cause of Gibbs phenomenon:

The FIR filter obtained by truncation can be expressed as

()1
() () ()

2

j j j

dH e H e e d
π

ω φ ω φ

π
ψ φ

π
−

−
= ∫

The window used to achieve simple truncation of the ideal filter is rectangular

window

M n M− ≤ ≤

2 1N M= +

[]
sin(())

() ,0 1

0,

c

LP

n M

n Mh n n N

otherwise

ω

π

−


−= ≤ ≤ −



[] [] []dh n h n nω= ⋅

1,0
[]

0,
R

n M
w n

otherwise

 ≤ ≤
= 


Digital Signal Processing Lab Manual

35

Prepared By: Mohd.Abdul Muqeet

Thus by applying windowing functions we can obtain FIR filters.

Available Fixed window functions Rectangular, Bartlett, Hamming, Hanning,

Blackmann etc.

Hamming window function

In Adjustable Window Functions, windows have been developed that provide control

over ripple by means of an additional parameter.

Like Kaiser Window

Where β is an adjustable parameter and 0 ()I β is a zero order Bessel function

To design a FIR filter order of the filter should be specified or can be calculated from

the following equation

()
()

1020 log 13

14.6 2

p s

s p

r r
N

w w π

− −
=

−

rp=passband ripple, rs=stopband ripple, wp=passband frequency

ws=stopband frequency

Then from order of the filter we can find the length by which a window function can

be applied.

Algorithm:

FIR Low Pass Filter design

1) Enter the pass band ripple (rp) and stop band ripple (rs).

2) Enter the pass band frequency (wp) and stop band frequency (ws).

3) Get the sampling frequency (fs), beta value for Kaiser window.

4) Calculate the analog pass band edge frequencies, w1 and w2.

i. w1 = 2*wp/fs

ii. w2 = 2*ws/fs

5) Calculate the order of the filter using the order equation.

6) Use switch condition and ask the user to choose either Rectangular Window or

Hamming window or Kaiser window.

7) Use rectwin, hamming, Kaiser Commands

Command fir1 uses the window method of FIR filter design, If w(n) denotes a

window, where 1 ≤ n ≤ N, and the impulse response of the ideal filter is h(n),

where hd(n) is the inverse Fourier transform of the ideal frequency response.

8) Calculate the digital frequency response using the command ‘freqz()’

9) Calculate the magnitude of the frequency response in decibels

m=20*log10 (abs(h))

10) Plot the magnitude response [magnitude in dB Vs normalized frequency

(om/pi)]

2
[] 0.54 0.46cos(),

2 1

n
w n M n M

M

π
= + − ≤ ≤

+

(){ }
()

2

0

0

1 /

[] ,

I n M

w n M n M
I

β

β

−

= − ≤ ≤

[] [] []dh n h n nω= ⋅

Digital Signal Processing Lab Manual

36

Prepared By: Mohd.Abdul Muqeet

Program:

%FIR Low Pass/High pass filter design using

Rectangular/Hamming/Kaiser window

clc; clear all; close all;
rp=input('enter passband ripple');

rs=input('enter the stopband ripple');

wp=input('enter passband freq');

ws=input('enter stopband freq');

fs=input('enter sampling freq ');

beta=input('enter beta value');
w1=2*wp/fs;

w2=2*ws/fs;

num=-20*log10(sqrt(rp*rs))-13;

dem=14.6*(ws-wp)/fs;

n=ceil(num/dem);

n1=n+1;
if(rem(n,2)~=0)

 n1=n; n=n-1;

end

c=input('enter your choice of window function 1. rectangular

2. Hamming 3.kaiser: \n ');

if(c==1)

 y=rectwin(n1);
 disp('Rectangular window filter response');

end

if (c==2)

 y=hamming(n1);

 disp('Hamming window filter response');

end
if(c==3)

 y=kaiser(n1,beta);

 disp('kaiser window filter response');

end

ch=input('give type of filter 1:LPF,2:HPF');
switch ch

 case 1

 b=fir1(n,w1,y);

 [h,o]=freqz(b,1,256);

 m=20*log10(abs(h));

 plot(o/pi,m);

 title('LPF');
 xlabel('(a) Normalized frequency-->');

 ylabel('Gain in dB-->');

 case 2

 b=fir1(n,w1,'high',y);

 [h,o]=freqz(b,1,256);
 m=20*log10(abs(h));

 plot(o/pi,m);

 title('HPF');

 xlabel('(b) Normalized frequency-->');

 ylabel('Gain in dB-->');

end

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Results:

enter passband ripple 0.02
enter the stopband ripple
enter passband freq 1000
enter stopband freq 1500
enter sampling freq 10000
enter beta value 5
enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
 1
Rectangular window filter response
give type of filter 1:LPF,2:HPF
1:LPF

Low pass FIR fi

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
 2
Hamming window filter response
give type of filter 1:LPF,2:HPF
1:LPF

Low pass FIR filter using Hamming

Prepared By: Mohd.Abdul Muqeet

enter passband ripple 0.02
enter the stopband ripple 0.01
enter passband freq 1000

freq 1500
enter sampling freq 10000
enter beta value 5
enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

Rectangular window filter response
give type of filter 1:LPF,2:HPF

Low pass FIR filter using Rectangular Window

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

Hamming window filter response
give type of filter 1:LPF,2:HPF

ass FIR filter using Hamming Window

Lab Manual

37

enter your choice of window function 1. rectangular 2.

enter your choice of window function 1. rectangular 2.

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
 3
kaiser window filter response
give type of filter 1:LPF,2:HPF
1:LPF

Low pass FIR filter using

FIR High pass Filter design

Results:

enter passband ripple
enter the stopband ripple
enter passband freq 1000
enter stopband freq 1500
enter sampling freq 10000
enter beta value 5
enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
 1
Rectangular window filter response
give type of filter 1:LPF,2:HPF
2:HPF

Prepared By: Mohd.Abdul Muqeet

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

kaiser window filter response
give type of filter 1:LPF,2:HPF

Low pass FIR filter using Kaiser Window

FIR High pass Filter design

enter passband ripple 0.02
enter the stopband ripple 0.01
enter passband freq 1000
enter stopband freq 1500
enter sampling freq 10000
enter beta value 5
enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

Rectangular window filter response
give type of filter 1:LPF,2:HPF

Lab Manual

38

enter your choice of window function 1. rectangular 2.

enter your choice of window function 1. rectangular 2.

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

High pass FIR filter using Rectangular Window

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
2
Hamming window filter response
give type of filter 1:LPF,2:HPF
2:HPF

High pass FIR filter using

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:
 3
kaiser window filter response
give type of filter 1:LPF,2:HPF
2: HPF

Prepared By: Mohd.Abdul Muqeet

pass FIR filter using Rectangular Window

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

Hamming window filter response
give type of filter 1:LPF,2:HPF

pass FIR filter using Hamming Window

enter your choice of window function 1. rectangular 2.
Hamming 3.kaiser:

kaiser window filter response
give type of filter 1:LPF,2:HPF

Lab Manual

39

enter your choice of window function 1. rectangular 2.

enter your choice of window function 1. rectangular 2.

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

High

Discussions on results:

Thus FIR digital filter designing is experimented using Matlab software.

Thus from the results students will be able to

1) Discuss the effect of order of the filer on

2) Discuss the effect of variation in

frequency, stop band frequency and sa

designing the FIR digital filter.

3) Discuss the difference between the Rectangular, Hamming and Kaiser

Window functions.

4) Discuss the performance of FIR digital filter designed using Kaiser window

over FIR digital filter designed with Rectangular and

functions.

Prepared By: Mohd.Abdul Muqeet

 pass FIR filter using Kaiser Window

filter designing is experimented using Matlab software.

results students will be able to

Discuss the effect of order of the filer on magnitude response.

Discuss the effect of variation in pass band ripple, stop band ripple, pass band

frequency, stop band frequency and sampling frequency respectiv

designing the FIR digital filter.

Discuss the difference between the Rectangular, Hamming and Kaiser

Window functions.

Discuss the performance of FIR digital filter designed using Kaiser window

over FIR digital filter designed with Rectangular and Hamming window

Lab Manual

40

filter designing is experimented using Matlab software.

pass band ripple, stop band ripple, pass band

mpling frequency respectively in

Discuss the difference between the Rectangular, Hamming and Kaiser

Discuss the performance of FIR digital filter designed using Kaiser window

Hamming window

Digital Signal Processing Lab Manual

41

Prepared By: Mohd.Abdul Muqeet

Cycle-II

Digital Signal Processing Lab Manual

42

Prepared By: Mohd.Abdul Muqeet

 TMS320C50 Architecture Overview

1. Introduction:
It is needless to say that in order to utilize the full feature of the DSP chip

TMS320C50, the DSP engineer must have a complete knowledge of the DSP device.

This chapter is an introduction to the hardware aspects of the TMS320C50. The

important units of TMS320C50 are discussed.

2. The DSP Chip TMS320C50:
The TMS320C50 is a 16-bit fixed point digital signal processor that combines

the flexibility of a high speed controller with the numerical capability of an array

processor, thereby offering an inexpensive alternative to multichip bit-slice

processors. The highly paralleled architecture and efficient instruction set provide

speed and flexibility capable of executing 10 MIPS (Million Instructions per Second).

The TMS320C50 optimizes speed by implementing functions in hardware that other

processors implement through microcode or software. This hardware intensive

approach provides the design engineer with processing power previously unavailable

on a single chip.

The TMS320C50 is the third generation digit l signal processor in the

TMS320 family. Its powerful instruction set, inherent flexibility, high-speed number-

crunching capabilities, and innovative architecture have made this high-performance,

cost-effective processor the ideal solution to many telecommunications, computer,

commercial, industrial, and military applications.

3. Key Features of TMS320C50:
The key features of the Digital Signal Processor TMS320C50 are:

* 35-/50-ns single-cycle fixed-point instruction execution time (28.6/20 MIPS)

* Upward source-code compatible with all `C1X and `C2x devices

* RAM-based memory operation (`C50)

* 9K x 16-bit single-cycle on-chip program/data RAM (`C50)

* 2K x 16-bit single-cycle on-chip boot ROM (`C50)

* 1056 x 16-bit dual-access on-chip data RAM

* 224K x 16-bit maximum addressable external memory space (64K program, 64K

data, 64K I/O, and 32K global)

* 32-bit arithmetic logic unit (ALU), 32-bit accumulator (ACC), and 32-bit

accumulator buffer (ACCB)

* 16-bit parallel logic unit (PLU)

* 16 x 16-bit parallel multiplier with a 32-bit product capability.

* Single-cycle multiply/accumulate instructions

* Eight auxiliary registers with a dedicated auxiliary register arithmetic unit for

indirect addressing.

* Eleven context-switch registers (shadow registers) for storing strategic CPU

controlled registers during an interrupt service routine

* Eight-level hardware stack

* 0- to 16-bit left and right data barrel-shifters and a 64-bit incremental data shifter

* Two indirectly addressed circular buffers for circular addressing

* Single-instruction repeat and block repeat operations for program code

* Block memory move instructions for better program/data management

* Full-duplex synchronous serial port for direct communication between the `C5x and

another serial device

* Time-division multiple-access (TDM) serial port

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

* Interval timer with period, control, and counter registers for software

reset

* 64K parallel I/O ports, 16 of which are memory mapped

* Sixteen software programmable wait

memory spaces.

4. Architecture:
A detailed architectural block diagram of TMS320C50 is

1-1. The TMS320C50 utilizes a modified Harvard architecture for speed and

flexibility. In a strict Harvard architecture, program and data memory are in two

separate spaces, permitting a full

TMS320 family's modification of the Harvard

program and data spaces, thereby increasing the flexibility

modification permits coefficients stored in program memory to be read into

RAM, eliminating the need for a separate coefficient ROM. It also makes available

immediate instructions and subroutines based on computed values

.

4.1 32-Bit Accumulator:
The TMS320C50 contains a 32

double-precision, two's complement arithmetic. The ALU is a general purpose

arithmetic unit that operates on 16

from immediate instructions. In addition to the usual

can perform Boolean operations, pro

high-speed controller. The accumulator stores the output from the ALU and

an input to the ALU. Its word length is 32

highorder

word (bits 31 through 16) and a

provided for storing and loading the high and lower order accumulator words to

memory.

4.2 16 x 16-Bit Parallel Multiplier
The multiplier performs a 16 x 16

32-bit result in a single instruction cycle. The multiplier consists of three units: the T

Prepared By: Mohd.Abdul Muqeet

* Interval timer with period, control, and counter registers for software

* 64K parallel I/O ports, 16 of which are memory mapped

* Sixteen software programmable wait-state generators for program, data, and I/O

A detailed architectural block diagram of TMS320C50 is illustrated in Figure

TMS320C50 utilizes a modified Harvard architecture for speed and

Harvard architecture, program and data memory are in two

separate spaces, permitting a full overlap of instruction fetch and execution.

TMS320 family's modification of the Harvard architecture allows transfer between

program and data spaces, thereby increasing the flexibility of the device. This

modification permits coefficients stored in program memory to be read into

liminating the need for a separate coefficient ROM. It also makes available

immediate instructions and subroutines based on computed values

The TMS320C50 contains a 32-bit ALU and accumulator for support of

complement arithmetic. The ALU is a general purpose

arithmetic unit that operates on 16-bit words taken from the data RAM or derived

from immediate instructions. In addition to the usual arithmetic instructions, the ALU

can perform Boolean operations, providing the bit manipulation ability required of a

speed controller. The accumulator stores the output from the ALU and

an input to the ALU. Its word length is 32-bit. The accumulator is divided into a

word (bits 31 through 16) and a low-order word (bits 15 through 0). Instructions are

provided for storing and loading the high and lower order accumulator words to

Bit Parallel Multiplier:
The multiplier performs a 16 x 16-bit two's complement multiplication with

a single instruction cycle. The multiplier consists of three units: the T

Lab Manual

43

* Interval timer with period, control, and counter registers for software stop, start, and

state generators for program, data, and I/O

illustrated in Figure

TMS320C50 utilizes a modified Harvard architecture for speed and

Harvard architecture, program and data memory are in two

overlap of instruction fetch and execution. The

architecture allows transfer between

of the device. This

modification permits coefficients stored in program memory to be read into the data

liminating the need for a separate coefficient ROM. It also makes available

bit ALU and accumulator for support of

complement arithmetic. The ALU is a general purpose

words taken from the data RAM or derived

arithmetic instructions, the ALU

ability required of a

speed controller. The accumulator stores the output from the ALU and is often

bit. The accumulator is divided into a

order word (bits 15 through 0). Instructions are

provided for storing and loading the high and lower order accumulator words to

bit two's complement multiplication with a

a single instruction cycle. The multiplier consists of three units: the T-

Digital Signal Processing Lab Manual

44

Prepared By: Mohd.Abdul Muqeet

Register, P-Register, and multiplier array. The 16-bit T-Register temporarily

stores the multiplicand and the P-Register stores the 32-bit product. Multiplier values

either

come from the data memory or are derived immediately from the MPY (multiply

immediate) instruction word. The fast on-chip multiplier allows the device to perform

fundamental operations such as convolution, correlation, and filtering. Two

multiply/accumulate instructions in the instruction set fully utilize the computational

bandwidth of the multiplier, allowing both operands to be processed simultaneously.

4.3 Shifters:
A 16-bit scaling shifter is available at the accumulator input. This shifter

produces a left shift of 0 to 16-bits on the input data to accumulator.

TMS320C50 also contains a shifter at the accumulator output. This shifter provides a

left shift of 0 to 7, on the data from either the ACCH or ACCL register, right, before

transferring the product to accumulator.

4.4 Date and Program Memory:
Since the TMS320C50 uses Harvard architecture, data and program memory

reside in two separate spaces. Additionally TMS320C50 has one more memory space

called I/O memory space. The total memory capacity of TMS320C50 is 64KW each

of Program, Data and I/O memory. The 64KW of data memory is divided into 512

pages with each page containing 128 words. Only one page can be active at a time.

One data page selection is done by setting data page pointer. TMS320C50 has 1056

words of dual access on chip data RAM and 9K words of single access Data/Program

RAM. The 1056 words of on chip data memory is divided as three blocks B0, B1 &

B2, of which B0 can be configured as program or data RAM.

Out of the 64KW of total program memory, TMS320C50 has 2K words of on-chip

program ROM.

The TMS320C50 offers two modes of operation defined by the state of the

MC/MP pin: the microcomputer mode (MC/MP = 1) or the microprocessor mode

(MC/MP = 0). In the microcomputer mode, on-chip ROM is mapped into the memory

space with upto 2K words of memory available. In the microprocessor mode all 64K

words of program memory are external.

4.5 Interrupts and Subroutines:
The TMS320C50 has three external maskable user interrupts available for

external devices that interrupt the processor.

The TMS320C50 contains an eight-level hardware stack for saving the contents of the

program counter during interrupts and subroutine calls. Instructions are available for

saving the device's complete context. PUSH and POP instructions permit a level of

nesting restricted only by the amount of available RAM.

4.6 Serial Port:
A full-duplex on-chip serial port provides direct communication with serial

devices such as codecs, serial A/D converters and other serial systems. The interface

signals are compatible with codecs and many others serial devices with a minimum of

external hardware.

4.7 Input and Output:

Digital Signal Processing Lab Manual

45

Prepared By: Mohd.Abdul Muqeet

The 16-bit parallel data bus can be utilised to perform I/O functions in two

cycles. The I/O ports are addressed by the four LSBs on the address lines, allowing 16

input and 16 output ports. In addition, polling input for bit test and jump operations

(BIO) and three interrupt pins (INT0 - INT2) have been incorporated for multitasking.

Software Overview

This chapter illustrates the use of program and execution mainly in the standalone

mode.

The Micro-50 EB has 3 software development tools namely

1. Standalone Mode

2. Monitor program

3. Serial Mode

In "Standalone Mode" the Micro-50 EB works with a 104 keys keyboard and

16x2 LCD display and line assembler. With this configuration, the student can enter

his program through the keyboard and edit and display it on the LCD display. The

user can enter the Mnemonics using the Line Assembler, and debug the program to

run it on Micro-50 EB.

"Monitor Program" is used to enter data directly into Data or Program memory,

display the data etc. It has several commands to enter the user program, for editing

and debugging.

In "Serial Mode", it works with a IBM PC computer and program entry and

debugging is done at the PC level. The Chapter-6 gives details about this operation.

Program and Execution:

1. Serial Monitor Mode:
Connect the serial monitor cable from Serial port of Micro-50 EB kit to the

serial port COM1 or COM2 of PC XT/AT (prefer COM1 for default selection). Now

execute communication software (XTALK.EXE) in PC.

Power on the Micro-50 EB Kit with all its set up ready and enter the following

command at the prompt.

Press the enter key to enter into serial monitor mode and the screen displays

the followingbMessage

Now the following menu will appear on the monitor.

Micro-50 EB Serial Monitor, Ver.1.0

(C) Copyright 1996 by Vi Microsystems (P) Ltd. Chennai.

Digital Signal Processing Lab Manual

46

Prepared By: Mohd.Abdul Muqeet

Now enter "HE" to view the help menu of the serial monitor.

To assemble the program given in the example enter "AS" at the prompt and press the

Enter Key, the screen displays the following message.

#Micro-50 EB Line Assembler, Version 2.0
Enter Address:

Now enter the program memory starting address "C000H" and press Enter Key. Now

the screen display next consequent message as

C000H

Enter the mnemonics of the program sequentially viewing opcodes of the respective

mnemonics after pressing enter key.

On completion of assembling enter dot (.) and press the enter key to come out to

prompt.

To execute the program use the command "GO C000" and press the Enter

Key, where C000 is program memory starting address.

To abort the execution, press the reset switch once to reset the Micro-50 Kit. Now

enter "SM" in Micro-50 EB trainer to re-enter into serial mode. To verify the

execution, dump the data memory from 8000H to 9000H using "DD" command. This

operation is same as Line assembler in standalone mode.

Note:

 1) At any occasion to abort the serial monitor from the execution of the

program press the reset switch of Micro-50 EB kit.

2) To quit of serial monitor mode enter "QU" at the prompt and press enter

key.

Digital Signal Processing Lab Manual

47

Prepared By: Mohd.Abdul Muqeet

Experiment – 7

Aim: To perform 16 bit addition and Integer Multiplication using DSP Trainer Kit

(TMS 320C50PQ57).

Apparatus: PC, DSP Trainer Kit (TMS 320C50PQ57).

Theory:
This experiment mainly described about how to construct the TMS320C50

assembly program using line assembler in the Monitor mode for Arithmetic

manipulations and usage of various instruction of TMS320C50 processor. Examples

of Arithmetic manipulations and usage of Instruction of TMS320C50 are given here.

Numerical analysis, floating point computations or other operations may require

arithmetic to be executed with more than 32-bits of precision. Since, the TMS320C50

is 16-bit fixed-point processor; software is required for the extended precision of

arithmetic operations. For proper operation, the overflow mode bit should be reset

(OVM = 0) so that the accumulator result will not be loaded with the saturation value.

Algorithm:

Addition:
In this example, two 16-bit numbers will be added as shown below:

 X0

 + Y0

 W0

Where all the numbers X0 & Y0 are 16-bit numbers. TMS320C50 has provision to

add two 16-bit numbers.

First load X0 in higher accumulator using LACC instruction and add Y0 with

accumulator by using ADD instruction.

Integer Multiplication:

The TMS320C50 hardware multiplier normally performs two's complement

16-bit by 16-bit multiplies and produces a 32-bit result in a single processor cycle. To

multiply two operands, one operand must be loaded into the T-register. The second

operand is moved by the multiply instruction to the multiplier, which then produces

the product in the P-register. Before another

multiply can be performed, the content of the P-register should be moved to the

accumulator or should be stored in data memory.

The following program stores the data 37A at data memory 8000 and the data

12E at the data memory address 8001. The instruction LT OP1 (0000h) loads the first

operand from dma 8000 to T register. The instruction MPY OP2 (0001h) multiplies

the content of dma 8001 with the T register. The result is stored in P register. The

instruction PAC transfers the content of P register to accumulator. The SACL and

SACH instructions store the lower and higher order results in dma 8002 and 8003.

Procedure:

1) Open the C50 Debugger software from the desktop.

2) Click the serial port settings and select auto detect.

 Serial>Port Settings>AutoDetect

Digital Signal Processing Lab Manual

48

Prepared By: Mohd.Abdul Muqeet

3) It won’t detect at first attempt then reset the kit using reset button and Type SM

using kit’s keyboard and press Enter.

4) Again Select auto detect then it will detect.

5) Select New Project in C50 Debugger Software, give name to project.

6) Create New Assembly File from the File Tab of C50 Debugger.

 File>New>Assembly File

7) Type the Program in the above file and save it as filename.asm

 *Select filename as Project Name

8) Go to Project Folder and right click on Assembly folder and add the filename.asm

to it.

9) Right Click on the CMD Files folder and add Micro50.cmd to it.

10) Save the Project, Build the Project.

11) Load the Program using Serial Tab.

 Load Program>Browse Corresponding ascii file name whose name is same as

name of program.

12) Reset the Kit and Type SM on kit using Kit’s Keyboard.

13) Now access the Program Memory and Data Memory by using Communication

Window.

 Select Serial>Communication Window

 14) After successfully downloading read the Message.

 PI C000-Downloading from Host in Communication Window.

15) Type SD 8000 and press enter then enter the Inputs.

 Ex: SD 8000:1234-3333 where 1234 is old data and 3333 is new data.

16) For two values press enter 3 times.

17) Then type dot. to come out.

18) Type GO C000 and press enter. See the message Executing….

19) Reset the Kit and Type SM using the Kits Keyboard.

20) Type SD 8002, press enter and observe the outputs.

Digital Signal Processing Lab Manual

49

Prepared By: Mohd.Abdul Muqeet

 16-Bit Addition

Program:

Addition

 .MMREGS

 .TEXT

C000 START: LDP #100H

C001 LACC 0000H ;ACC=X0

C002 ADD 0001 ;ACC=X1 +X0

C003 SACL 02H ;ACCL =W0

C004 SACH 03H ;ACCH=W1

C005 HERE: B HERE

Results:

Communication Window

#SD 8000

Substitute data 8000:0003-0004

Substitute data 8001:0004-0002

Substitute data 8002:0007

G0 C000

Executing….

Micro-50 pt Serial Monitor,Ver-2.0

#SD 8000

Substitute data 8000:0004-

Substitute data 8001:0002-

Substitute data 8002:0006

Digital Signal Processing Lab Manual

50

Prepared By: Mohd.Abdul Muqeet

Interger Multiplication

ADDRESS MNEMONICS

 .MMREGS

 .TEXT

C000 START: LDP #100H

C001 LACC #037AH,0

C002 037A

C003 SACL 0000, 0

C004 LACC #012EH, 0

C005 012E

C006 SACL 0001,0

C007 LT 0000 ; T=37A

C008 MPY 0001 ; P=37A*12E=0004 19EC

C009 PAC ; ACC=0004 19EC

C00A SACL 0002, 0

C00B SACH 0003, 0

C00C HERE : B HERE

Results:

#SD 8000

Substitute data 8000:0003-037A

Substitute data 8001:0004-012E

Substitute data 8002:0007

G0 C000

Executing….

Micro-50 pt Serial Monitor,Ver-2.0

#SD 8000

Substitute data 8000:037A-

Substitute data 8001:012E-

Substitute data 8002:19EC-
Substitute data 8003:0004-

Discussions on results:

Thus using DSP Trainer Kit (TMS 320C50PQ57) we have performed the 16 bit

addition and multiplication. Thus from the results students will be able to

1) Discuss the different integer arithmetic operations performed using the DSP

Trainer Kit (TMS 320C50PQ57).

2) Discuss the usage of DSP Trainer Kit (TMS 320C50PQ57) for floating point

arithmetic operations.

Digital Signal Processing Lab Manual

51

Prepared By: Mohd.Abdul Muqeet

Experiment – 8

Aim: To generate Triangular, and Square Waveforms using DSP Trainer Kit (TMS

320C50PQ57).

Apparatus: PC, DSP Trainer Kit (TMS 320C50PQ57).

Theory:
The SPLK instruction allows a full 16-bit pattern to be written into any

memory location. The parallel logic unit (PLU) supports this bit manipulation

independently of the ALU so that the ACC is un affected. In this programme, LDP

instruction is used to load data memory pointer from 8000.

Algorithm:

Triangular Waveform:

1) Load data pointer with the current page number in which we want to store

local variable.

2) Use SPLK to load the value of the temporary register.

3) Under the label CONT1, load the auxiliary register ar2 with the contents of

frequency.

4) Under the label CONT1 initialize count as 04h.

5) Load accumulator register with temporary register value.

6) Add it with value of amplitude.

7) And store back it to temporary register.

8) Check current auxiliary register value for zero, if not equal to zero go back to

label COUNT, otherwise go to next instruction.

9) Again load the auxiliary register ar2 with the contents of frequency.

10) Again out count as 04h.

11) Load accumulator register with temporary register value.

12) Subtract it with value of amplitude.

13) And again store back it to temporary register.

14) Multiply the auxiliary register with the temp register value.

15) Check current auxiliary register value for zero, if not equal to zero go back to

label COUNTX, otherwise go to next instruction.

16) Go back to label COUNT1 to repeat the algorithm continuously.

Square Waveform:

1) Load data pointer with the current page number in which we want to store

local variable.

Digital Signal Processing Lab Manual

52

Prepared By: Mohd.Abdul Muqeet

2) Use SPLK to load the value of the temporary register with value #7FFFH

3) Output the valued through DAC port.

4) Call DELAY label.

5) Use SPLK to load the value of the another temporary register with value

#0FFFH

6) Output the valued through DAC port.

7) Again Call DELAY label.

8) In label DELAY load the Auxiliary Register AR3 with a value FF.

9) Multiply this auxiliary register AR3 value with the same value

10) In label BACK decrement the resultant value of above multiplication by one and

check for not equal to zero. Repeat this procedure till the result goes to zero,

and then return from the loop.

Procedure:

1) Open the C50 Debugger software from the desktop.

2) Click the serial port settings and select auto detect.

 Serial>Port Settings>AutoDetect

3) It won’t detect at first attempt then reset the kit using reset button and Type SM

using kit’s keyboard and press Enter.

4) Again Select auto detect then it will detect.

5) Select New Project in C50 Debugger Software, give name to project.

6) Create New Assembly File from the File Tab of C50 Debugger.

 File>New>Assembly File

7) Type the Program in the above file and save it as filename.asm

 *Select filename as Project Name

8) Go to Project Folder and right click on Assembly folder and add the filename.asm

to it.

9) Right Click on the CMD Files folder and add Micro50.cmd to it.

10) Save the Project, Build the Project.

11) Load the Program using Serial Tab.

 Load Program>Browse Corresponding ascii file name whose name is same as

name of program.

12) Reset the Kit and Type SM on kit using Kit’s Keyboard

Digital Signal Processing Lab Manual

53

Prepared By: Mohd.Abdul Muqeet

13) After successfully downloading the program observe the output waveform on

CRO and calculate Time Period, amplitude and frequency.

Programs

Triangular Waveform Generation

 .MMREGS
 .TEXT

C000 START: LDP #100H

C001 SPLK #0, 0

C002 CONT1: LAR 2, #43; Value of frequency

C003 CONT : OUT 00, 4

C004 LACC 00

C005 ADD #15 ; Value of amplitude (added)

C006 SACL 00

C007 MAR *,2

C008 BANZ C004,*-

C009 LAR 2, #43 ; Value of frequency

C00a CONTX: OUT 00, 4

C00b LACC 00

C00c SUB #15 Value of amplitude (subtracted)

C00d SACL 00

C00e MAR *,2

C00f BANZ C00D

C010 B COUNT1

Square Waveform Generation

 .MMREGS

 .TEXT

C000 START: LDP #100H

C001 SPLK #7FFH,00

C002 OUT 00,4

C003 CALL DELAY

C004 SPLK #0FFFH,01

C005 OUT 01,4

C006 CALL DELAY

C007 DELAY: LAR AR3, #FF

C008 BACK : MAR *, AR3

C009 BANZ BACK,*-

C00a RET

Discussions on results:
This experiment not only provides the software implementation of the waveform

generation but also enables the students to perform real time interfacing with external

hardware like CRO. Thus from the results students will be able to

1) Discuss the different parameter settings in DSP Trainer Kit (TMS

320C50PQ57) for obtaining the different waveforms.

2) Discuss how the assembly language programs are written using line assembler

in the Monitor mode.

Digital Signal Processing Lab Manual

54

Prepared By: Mohd.Abdul Muqeet

Experiment – 9

Aim: To verify and perform LED interfacing using DSP Trainer Kit (TMS

320C50PQ57).

Apparatus: PC, DSP Trainer Kit (TMS 320C50PQ57).

Algorithm:

1) Load data pointer with the current page number in which we want to store

local variable.

2) Load accumulator with contents of address 00h.

3) Start a label BACK and store the low accumulator with 00h.

4) Call DELAY label.

5) Initialize count 0ah and compare it with zero.

6) And Call DELAY

7) After coming from Call DELAY compliment the values

8) Again go back to BACK

9) Repeat the procedure.

 10) In label DELAY load the Auxiliary Register AR7 with a value FF.

Multiply this auxiliary register AR7 value with the same value.

11) In label HERE decrement the resultant value of above multiplication by one

and check for not equal to zero. Repeat this procedure till the result goes to zero,

and then return from the loop

Procedure:

1) Open the C50 Debugger software from the desktop.

2) Click the serial port settings and select auto detect.

 Serial>Port Settings>AutoDetect

3) It won’t detect at first attempt then reset the kit using reset button and Type SM

using kit’s keyboard and press Enter.

4) Again Select auto detect then it will detect.

5) Select New Project in C50 Debugger Software, give name to project.

6) Create New Assembly File from the File Tab of C50 Debugger.

 File>New>Assembly File

7) Type the Program in the above file and save it as filename.asm

 *Select filename as Project Name

Digital Signal Processing Lab Manual

55

Prepared By: Mohd.Abdul Muqeet

8) Go to Project Folder and right click on Assembly folder and add the filename.asm

to it.

9) Right Click on the CMD Files folder and add Micro50.cmd to it.

10) Save the Project, Build the Project.

11) Load the Program using Serial Tab.

 Load Program>Browse Corresponding ascii file name whose name is same as

name of program.

12) Reset the Kit and Type SM on kit using Kit’s Keyboard

13) After successfully downloading the program observe the output i.e LEDs on the

DSP kit.

Program:

 .MMREGS

 .TEXT

START: LDP #100H

 LACC #0H

BACK: SACL 00H

 OUT 00H,0AH

 CALL DELAY

 CMPL

 B BACK

DELAY: LAR AR7,#07FFH

 MAR *,AR7

HERE: BANZ HERE,*-

 RET

Discussions on results:

This experiment not only provides the software implementation of the LED

interfacing but also enables the students to understand the programming concept to

initialize hardware like LEDs.

From the results students will be able to

1) Discuss the different parameter settings in DSP Trainer Kit (TMS

320C50PQ57) for performing LED interfacing.

2) Discuss how the assembly language programs are written using line assembler

in the Monitor mode.

3) Discuss the effect of avoiding the delay routine in the program.

4) Discuss the effect of increasing the delay duration in the program.

Digital Signal Processing Lab Manual

56

Prepared By: Mohd.Abdul Muqeet

INTRODUCTION TO MICRO – 2407 Trainer Kit

1. Introductions
Micro-2407 is a 16-bit (data lines) fixed point DSP trainer, based on texas

instruments TMS320LF2407A DSP Processor. This trainer enables the user to learn

the basics of digital signal processing & digital control along with basic DSP

functions like filtering, PWM generation, and calculation of spectral characteristics of

input analog signals. The trainer helps to perform real time implementation of very

complex algorithms, such as adaptive control, Motor control etc.

The TMS320LF2407A contains a C2xx DSP core along with useful

peripherals such as ADC, Timer, PWM Generation are integrated onto a single piece

of silicon.

The Micro-2407 trainer can be operated in two modes.

In the mode: 1(serial mode) the trainer is configured to communicate with PC

through serial port.

In the mode: 2 (stand alone mode), the user can interact with the trainer

through the IBM PC keyboard and 16 × 2 LCD display.

Specifications

1. PROCESSOR

CPU : Texas Instruments TMS320LF2407A,

Crystal Frequency : 10MHz.

Clock Frequency : 40 MHz

Wait States : 2 for EPROM, 0 for On-Chip RAM, 2

for external RAM and 6 for LCD

DISPLAY.

2. MONITOR (EPROM) : 0x0000 - 0xBFFF for 48kwords

3. MEMORY

Program RAM : 0xC000 - 0xFFFF for 16kwords.

Data RAM : 0x9000 - 0xFFFF for 32kwords

(0x8000 to 0x8FFF reserved for

monitor).

4. SERIAL : One RS232C Serial Interface using on-

chip SERIAL COMMUNICATION

INTERFACE (SCI) module

5. TIMER : On-chip timer can be used.

6. INTERRUPTS : 6 Interrupt lines of TMS320LF2407A

are available to users.

7. IBM AT KEY BOARD : CD 4015-101 KEY keyboard controller

8. DISPLAY : 16x2 LCD display (For Mode-2).

9 ON-BOARD BATTERY BACKUP : 3.6V, Ni-Cd Battery

10. POWER SUPPLY (LPOW-001A) SPECIFICATIONS

Mains : 230 Volts AC at 50 Hz

Outputs : 1. + 5 Volts, 3.5 Amps Regulated

 2. + 12 Volts, 150 mA Regulated

 3. - 12 Volts, 150 mA Regulated

 4. +5 Volts, 500 mA Regulated

Digital Signal Processing Lab Manual

57

Prepared By: Mohd.Abdul Muqeet

2. Hardware Description of MICRO 2407

2.1. Front Panel Description
This chapter gives a brief description about Front Panel of Micro-2407 Trainer board.

Figure -Pictorial View of Micro-2407

2.2 Connector Details

1. Introduction
Following are the shortlist of connectors available on Micro-2407 trainer board.

P1 - 5 Pin Unicon Connector

P2 - 9 Pin Serial port Connector

P3 - 2 Pin J801 Connector

P4 - 40 Pin FRC Connector

P5 - 14 Pin JTAG Connector

P6 - 26 Pin FRC Connector

P7 - J801 3 Pin Connector

P8 - 34 Pin FRC Connector

P9 - 6 Pin Keyboard Connector

2. Power Connector: (P1)

Connector Used
Single row 5 Pin UNICON Male Connector

- Spacing between pins 2,3,4,5 = 5mm

- Spacing between pins 1&2 = 7.5mm

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

Pin Details

Where,

NC - No Connection

VCC - +5V Power Supply

GND - 0V Reference Ground

Mating Connector
Single row 5-pin UNICON Female Connector

- With the same spacing as said above

3. Serial Port Connector: (P2)

Connector Used
9 Pin D type Male Connector

- Pins arranged in two rows of 5 and 4 pins

- Grid pitch is 2.76 mm * 2.84 mm

- The connector is AMPHENOL standard

Signal Definitions
TxD - Transmit Data

RxD - Receive Data

RTS - Ready to send

CTS - Clear to send

Mating Connector
9 Pin D type Female Connector

4. J801 2 Pin Connector

Pin Configuration
1 - GND

2 - +5v

Prepared By: Mohd.Abdul Muqeet

+5V Power Supply

0V Reference Ground

pin UNICON Female Connector

With the same spacing as said above

: (P2)

9 Pin D type Male Connector

arranged in two rows of 5 and 4 pins

Grid pitch is 2.76 mm * 2.84 mm

The connector is AMPHENOL standard

Transmit Data

Receive Data

Ready to send

Clear to send

9 Pin D type Female Connector with the same specifications.

(P3)

Pin Configuration

Lab Manual

58

Digital Signal Processing Lab Manual

59

Prepared By: Mohd.Abdul Muqeet

5. General Purpose Input / Output Connector (P4)
Connector Used: 40 Pin Dual row male header

Mating Connector: 40 Pin Dual row female Socket

6. 14 PIN JTAG Connector (P5)
Connector Used: 14 Pin Double row male connector

Mating Connector: 14 Pin Double row female Socket

7. ADC Input FRC Connector (P6)

Connector Used
26 Pin Double Row Header (13*2)

 Mating Connector
26 Pin Double row socket

8. J801 3 Pin Connector (P7)

Pin Configuration
1 - GND

2 - DAC1 OUTPUT

3 - DAC2 OUTPUT

9. PWM Output 34 Pin FRC Connector (P8)
Connector Used: 34 Pin Double Row Headers

Mating Connector
34 Pin Double Row Socket

10. IBM PC Keyboard Connector: (P9)

 Connector Used
6 Pin PS2 Female Connector

Signal Definitions

CLK - Keyboard Clock

DATA - Serial Data from keyboard

Mating Connector

6 Pin PS2 Male Connector

(Available in the IBM PC Keyboard itself)

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

2.3 Front Panel View

Front Panel Description

Power ON/OFF switch -

MCB -

PWM INPUT -

 controller unit

R, Y, B -

Voltmeter -

P, N -

A+, A-, F+, (+) - To connect the DC output to the load.

Prepared By: Mohd.Abdul Muqeet

 To switch ON/OFF power to the module.

 To control input AC voltage to the power circuit.

 To connect the PWM input / feedback signal from / to the

controller unit

 To connect 3· output to the load.

 To display DC link voltage.

 To connect AC input to the module.

To connect the DC output to the load.

Lab Manual

60

To switch ON/OFF power to the module.

To control input AC voltage to the power circuit.

To connect the PWM input / feedback signal from / to the

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

RST

PWM1, PWM 2...PWM 6

respect to ground point.

Idc, Ir, Iy, Ib

PWM Isolation -

2.3 Hardware Description

Block Diagram

Figure 16 Block diagram for IGBT power module

The block diagram for IGBT power module consists of the following.

1. Rectifier & Filter

2. Power circuit

3. Controller

4. Optoisolator

5. Gate Driver

6. Current Sensor

7. Signal conditioner

8. Protection Circuit.

Prepared By: Mohd.Abdul Muqeet

 - To reset the module.

 - Test points to view the PWM signal to the switches with

 - Test points to view the sensed input DC current & output

 R, Y and B phase currents.

- To isolate the gate signals.

2.3 Hardware Description

Figure 16 Block diagram for IGBT power module

The block diagram for IGBT power module consists of the following.

1. Rectifier & Filter

7. Signal conditioner

8. Protection Circuit.

Lab Manual

61

Test points to view the PWM signal to the switches with

Test points to view the sensed input DC current & output

Digital Signal Processing Lab Manual

62

Prepared By: Mohd.Abdul Muqeet

Block Diagram Description

1. Rectifier & Filter
The input AC voltage is rectified by the Diode Bridge Rectifier circuit. The

rectified DC voltage is fed to the power circuit through a filter capacitor. The filter

capacitor eliminates the unwanted ripple in the Dc input.

2. Power Circuit
The Power circuit consists of three leg IGBT circuit. IGBT switch is used as a

switching device in the power circuit. The PWM signal from the driver IC is fed to the

gate of the switch. The output from the power circuit is given to the load. The output

may be either AC/DC depending on the inverter/chopper mode of operation.

3. Controller
The PWM signal to the IGBT switches is generated by the controller unit. The

controller may be any processor. The PWM signal from the controller is fed to the

module through the connector provided on the front panel. In this implementation,

controller is used PWM generation.

4. Optoisolator (6N137)

The function of Optoisolator is to isolate the control circuit from power
circuit.PWM signal from the controller is not directly fed to the power circuit in order

to protect the PWM signal it is essential to provide isolation circuit between power

circuit and control circuit or else the high power components may damage the low

power PWM circuit components.

5. Gate Driver (IR2110)
An IGBT drive circuit is designed to connect the gate directly to a voltage

bus with no intervening resistance other than the impedance of the drive circuit

switch. Gate driver acts as a high-power buffer stage between the PWM output of

the control device and gates of the primary power switching IGBT.

6. Current Sensor
IGBT power module output current is not directly fed to control (Protection)

circuits. The sensor used for sensing current works on the principle of Hall Effect.

Hence these sensors are called Hall Effect transducer. Hall Effect transducer output

current depends upon transducer primary and secondary winding ratio. The turn’s

ratio represents the ratio of the number of primary turns to the number of secondary

turns. A Hall effect current transducer senses the current IDC, Ir(R), Iy(Y) Ib(B).

7. Signal Conditioner
The signal from the current sensor is fed back to the controller unit. The gain

of the current signals has to be improved to achieve controller requirements. So the

signal needs to be conditioned in the signal conditioner circuits.

8. Protection Circuit
In the protection circuit the DC current Idc is sensed. If the I dc value increases

than the limit, the protection circuit activates and cuts the PWM to the switches in the

module. The LED glows to indicate the system shut down condition. The system can

be reset by the RST press button provided on the front panel. Now the LED switches

OFF. Again the PWM signal should be applied to the system.

Digital Signal Processing Lab Manual

63

Prepared By: Mohd.Abdul Muqeet

Experiment – 10

Aim: To develop a Program to control the speed of Separately Excited DC motor by

implementing 4 quadrant choppers and using Micro – 2407 & VPET-106A.

Equipment Required:

1. VPET-106A Module

2. Separately Excited DC motor

3. Micro-2407 Trainer

4. PC-PC serial port cable.

5. Patch Chords

6. 26 Pin FRC cable

7. 34 Pin FRC cable (dual type)

8. DC Regulated Power Supply (0-30V)

Connection Diagram

Digital Signal Processing Lab Manual

64

Prepared By: Mohd.Abdul Muqeet

Connection View

Procedure:

a) Connection Procedure:

1. Connect the 26 pin FRC cable one end to Micro-2407 Trainer and the other end to

“ADC input to DSP” placed in ASIPM Power Module.

2.Connect the 34 pin FRC 1to 1 to cable one end to MICRO-2407 Trainer and ,the

other end to “PWM output from DSP” and the remaining end to QEP Driver.

3. Connect the Motor terminals A and AA to the U and V terminals of “ASIPM Power

Module”

4. Connect the motor terminal F and FF to the W, +ve terminals in

“ASIPM Power Module”.

5. If speed of the motor is to be sensed using optical encoder or proximity switch

connect, the 9 pin D cable from the motor into the speed feedback connector placed at

the back side of “ASIPM Power Module”

6. If the speed of the motor is to be sensed using QEP, connect the 9 pin D cable from

the signal conditioner. Connect the 34 pin FRC from the QEP Signal Conditioner unit

into the 34 pin header placed in the Micro-2407 Trainer.

7. Connect the serial port of PC to the serial port connector (P2) in the Micro-2407

Trainer.

Digital Signal Processing Lab Manual

65

Prepared By: Mohd.Abdul Muqeet

8. Set the SW1 Switch in the Micro-2407 Trainer downward direction, it works in

serial monitor mode.

b) Experiment Procedure

1. Verify the connection as per the connection procedure and wiring diagram.

2. Switch ON the Micro-2407 Trainer.

3. Power ON the “ASIPM Power Module” power ON power switch.

4. Check whether shut down LED “SD” LED glows, press the Reset switch, the LED

gets OFF.

Open Loop Control of Dc Motor

1. Select C2407 from your target directory or from your desktop in PC.

2. Now the ‘configure the port open, select the port to which Micro-2407 trainer and

press enter key.

3. Select the open loop Menu in that select DC motor followed by Chop\v/up.

4. The plot of ‘speed and current’ in now available in PC.

5. Select the send, now transmission completed message appears given ok.

6. Select the Execute, now “Kp and Ki parameter settings window appears. Enter the

Kp and Ki values and given OK.

7. Now the current value of speed and current is displayed.

8. Vary the speed of motor by pressing SW2 and SW3 key placed in the Micro-2407

trainer and note down the corresponding output voltage.

Closed Loop Control of DC Motor.

1. Select the “C2407” from the desktop in PC.

2. Now the “Configure port open “open, select the port to which Micro-2407 Trainer

and press “Enter Key”.

3. Select the Closed Loop Menu in that select DC Motor followed by Chop\v/up.

4. The plot of “Speed and current” is now available in PC.

5. Select the SEND, now transmission completed message appears given ok.

6. Select the EXECUTE; now the “Kp and Ki Parameter Settings” windows appears.

Enter the Kp and Ki values and given OK.

7. Now the current value of speed and current is displayed in PC.

8. Vary the speed of motor by pressing SW2 or SW3 key placed in the Micro-2407

Trainer and note down the corresponding voltage.

Digital Signal Processing Lab Manual

66

Prepared By: Mohd.Abdul Muqeet

Results: Use the following Table for both Open Loop and Closed Loop for

calculation of the

Table for closed Loop Mode of operation

Sr.

N

o

Input

DC

Voltag

e

inV

Measure

d

Output

voltage

From

Power

Module

oV

onT

off
T

T

on off
T T+

Calculted

Output

Voltag

0
on

in

T
V V

T
=

Set

Spee

d

(rpm)

setN

Rated

Speed

(rpm)

ratedN

Proportion

al Gain

p
K

Integra

l Gain

IK

1

2

3

4

5

Or we can use this Table for Open Loop mode

Table for Open Loop Mode of operation

S.

No

Vin

(v)

Iin

(A)

S1

Kg

S2

Kg

Speed

RPM

Torque

N-m

I/P Power

(w)

O/P Power

(w)

%

Efficiency

n

1

2

3

4

5

Torque = 1 2(). .s s r g−

Where r=drum radius = 0.071m

Input Power: .in inV I=

Output Power: 2 / 60N Tπ

Efficiency n : (output power/Input Power)*100

Discussions on results:

Thus we have studied the speed of Separately Excited DC motor by implementing 4

quadrant choppers and using Micro – 2407 & VPET-106A.

From the results students will be able to

1) Discuss the open loop mode operation for calculating the efficiency of the

motor in load variation.

2) Discuss the closed loop mode operation for calculating the efficiency of the

motor in load variation.

3) Discuss the effect of Kp value on the offset error in speed.

4) Discuss the effect of Ki value on the offset error in speed.

Digital Signal Processing Lab Manual

67

Prepared By: Mohd.Abdul Muqeet

Experiment – 11

Aim: To study the Open Loop/Closed Loop Speed control of 3 phase AC Induction

Motor with spring balance Load using VF Control (Sine PWM) using VPET-106A

Module and Micro-2407 trainer kit.

Equipments Required

1. VPET-106A Module

2. 3 phase AC induction motor

3. Micro-2407 Trainer

4. PC-PC serial port cable.

5. Patch Chords

6. 26 Pin FRC cable

7. 34 Pin FRC cable (dual type)

8. DC Regulated Power Supply (0-30V)

Connection Diagram

Digital Signal Processing Lab Manual

68

Prepared By: Mohd.Abdul Muqeet

Connection View

Open Loop Speed Control:

Connection Procedure:

1. Connect the 1 phase AC supply terminals to the “1 phase 230V AC input”

terminals of the VPET-106A Module through the 1 phase -VARIAC.

2. Connect the VPET-106A module output terminals U, V and W to the input

terminals of 3 phase AC induction motor.

3. Connect Micro-2407 trainer module to power supply.

4. Connect the 34 pin FRC cable one end to the 34 Pin FRC headers in Micro – 2407

Trainer, one end to speed sensor interface card and the other end to “IGBT- PWM

INPUTS” in the VPET-106A Power Module.

5. Connect the speed feedback signal from the motor to speed sensor interface card

through 9-pin ‘D’ type 1:1 cable.

6. Connect Serial Port connector of PC to the 9-pin serial connector of Micro-2407

trainer using PC-PC serial port cable.

Experiment Procedure

1. Verify the connections as per the connection procedure and wiring diagram.

2. Switch ON the Micro-2407 Trainer.

3. Keep the auto transformer in minimum position, and then switch ON the power

ON/OFF switch in the VPET-106A. Check whether shut down LED “SD” glows or

not. If ‘SD’ LED glows press the Reset switch in the Micro-2407 and then reset your

VPET-106A power module.

4. Download and execute the program as per the following “Program Download

Procedure” given below.

Digital Signal Processing Lab Manual

69

Prepared By: Mohd.Abdul Muqeet

5. Switch ON the MCB, then slowly increases the 3 phase AC input to the module

through the auto transformer and set the DC link voltage at 350V.

6. Switch ON the PC and then press Reset Switch of the Micro-2407 Trainer.

Program Download Procedure

1. Double Click C2407 debugger icon from the target directory or from the desktop.

Now the window shows

2. Now configure the serial port settings and press ‘OK’ button. Now the window

shows.

3. Select the required program to be downloaded. For open loop AC motor with

Sine/Tri or space vector Modulation select Open Loop —> AC Motor —> Sine/Tri

or Space vector.

4. Ensure whether the motor is connected or not. Then click ‘OK’.

6. Click ‘Send’.

7. Click ‘OK’ (the particular file will be download to controller).

8. Now the transmission completed message appears, click ‘OK’ and then click

‘EXECUTE’.

9. Check the all PWMs by connecting CRO. Now apply AC voltage though single

phase variac upto 300VDC.

10. Now, the speed value is plotted then speed and frequency numerical values are

displayed.

11. To change the speed of the motor, use the increment/decrement switch in the 2407

kit.

12. To measure i/p voltage of the motor, connect Ac voltmeter (0- 450 V) across U

and V terminals of the VPET-106A and frequency is obtained from the front end

software.

Now check the V/F ratio of the motor.

13. By applying load to the motor, motor speed is not remains constant and it is not

equal to the set speed.

14. To measure the load current of the motor, externally connect one AC ammeter in

series with any one phase.

Closed Loop Speed Control:

Connection Procedure

1. Connect the 1 phase AC supply terminals to the “1 phase 230V AC input”

terminals of the VPET-106A Module through the 1 phase -VARIAC.

Digital Signal Processing Lab Manual

70

Prepared By: Mohd.Abdul Muqeet

2. Connect the VPET-106A module output terminals U, V and W to the input

terminals of 3 phase AC induction motor.

3. Connect Micro-2407 trainer module to power supply.

4. Connect the 34 pin FRC cable one end to the 34 Pin FRC header in Micro – 2407

Trainer, one end to speed sensor interface card and the other end to “IGBT- PWM

INPUTS” in the VPET-106A Power Module.

5. Connect the speed feedback signal from the motor to speed sensor interface card

through 9-pin ‘D’ type 1:1 cable.

6. Connect Serial Port connector of PC to the 9-pin serial connector of Micro-2407

trainer using PC-PC serial port cable.

Experiment Procedure

1. Verify the connections as per the connection procedure and wiring diagram.

2. Switch ON the Micro-2407 Trainer.

3. Keep the auto transformer in minimum position, and then switch ON the power

ON/OFF switch in the VPET-106A. Check whether shut down LED “SD” glows or

not. If ‘SD’ LED glows press the Reset switch in the Micro-2407 and then reset your

VPET-106A power module.

4. Download and execute the program as per the following “Program Download

Procedure” given below

5. Switch ON the MCB, then slowly increases the 3 phase AC input to the module

through the auto transformer and set the DC link voltage at 350V.

6. Switch ON the PC and then press Reset Switch of the Micro-2407 Trainer.

Program Downloading Procedure:

1. Double Click C2407 icon from the target directory or from the desktop. 2. Now

configure the serial port settings and press ‘OK’ button. Now the window shows.

2. Select the required program to be downloaded. For close loop AC motor with

Sine/Tri or space vector Modulation select Close Loop —> AC Motor —> Sine/Tri

or Space vector.

3. Ensure whether the motor is connected or not. Then click ‘OK’.

4. Click ‘Send’ then the window shows below.

5. Click ‘OK’ (the particular file will be download to controller)

6. Now the transmission completed message appears, click ‘OK’ and then click

‘EXECUTE’.

Digital Signal Processing Lab Manual

71

Prepared By: Mohd.Abdul Muqeet

7. Check the all PWMs by connecting CRO. Now apply AC voltage though single

phase variac upto 300VDC.

8. Now, the speed value is plotted then speed and frequency numerical values are

displayed.

9. To change the speed of the motor, use the increment/decrement switch in the 2407

kit.

10. To measure i/p voltage of the motor, connect Ac voltmeter (0- 450 V) across U

and V terminals of the VPET-106A and frequency is obtained from the front end

software. Now check the V/F ratio of the motor.

11. By applying load to the motor, motor speed is remains constant and it is equal to

the set speed.

12. To measure the load current of the motor, externally connect one AC ammeter in

series with any one phase. (Ref: connection diagram).

Results: Use the following Table for Closed Loop mode for operation

Sr.

No

Input

Voltage

inV

Measur

ed

Output

voltage

From

Power

Module

oV

onT off
T T

on off
T T

Calculted

Output

Voltag

Set

Speed

(rpm)

setN

Rated

Speed

(rpm)

ratedN

p
K

IK

1

2

3

4

5

Discussions on results:

Thus the real time interfacing of the Induction motor with Micro-2407 trainer kit is

experimented and speed control of 3 –ph Induction Motor with spring balance Load

using the VPET-106A Module and Micro-2407 trainer kit is performed.

From the results students will be able to

1) Discuss the open loop mode operation for calculating the efficiency of the

motor in load variation.

2) Discuss the closed loop mode operation for calculating the efficiency of the

motor in load variation.

3) Discuss the effect of Kp value on the offset error in speed.

4) Discuss the effect of Ki value on the offset error in speed.

Digital Signal Processing Lab Manual

72

Prepared By: Mohd.Abdul Muqeet

Experiment – 12

Aim: To study the open and closed loop speed control of BLDC Motor using IPM and

Micro-2407.

Equipments Required
1. PEC16DSMO1 Power module

2. Micro - 2407 Trainer kit

3. BLDC Motor

4. Hall Sensor signal conditioner

5. Cables

i. 34 pin FRC 1 to 1 to 1(dual type).

ii. 26 pin FRC 1 to 1.

iii. PC to PC Serial port cable

Connection Diagram

Digital Signal Processing Lab Manual

73

Prepared By: Mohd.Abdul Muqeet

Connection Procedure

1. Connect the three-phase AC supply (MAINS) to i/p of 3NVARIAC.Then 3-phase

VARIAC o/p connect to R, Y and B (3N INPUTS) terminals of PEC16DSMO1

Power Module.

2. Connect the U, V, W terminals (through switching output connector) in the

PEC16DSMO1 Power Module to the 7 - pin supply connector of the Motor (refer

connection diagram)

3. Connect the 17 pin Feedback connector from the Motor into Hall sensor signal

conditioner (Through 9 Pin “D Connector”).

4. Connect the 34 pin FRC cable one end to the 34 Pin FRC header in Micro - 2407

Trainer, one end to Hall Sensor signal conditioner and the other end to “IGBT-PWM

INPUTS” in the PEC16DSMO1 Power Module.

5. Connect the serial port PC-PC cable between PC and Micro - 2407 Trainer.

6. Connect one end of 26 Pin FRC cable to 26 pin connector placed in Micro - 2407

Trainer and the other end to “FEEDBACK INPUTS” in PEC16DSMO1 Power

Module.

Experiment Procedure

1. Verify the connections as per the connection procedure and Wiring Diagram.

2. Switch ON the Micro-2407 DSP Trainer.

3. Power ON the Intelligent Power Module (PEC16DSMO1) and MCB.

4. Check whether shut down LED “SD” glows in the power module or not. If ‘SD’

LED glows press the Reset switch in the front panel, the LED gets OFF.

5. After ensuring all the connections, using VARIAC apply the input voltage slowly

450V DC (DC rail Voltage) which is shown in the power module’s voltmeter.

6. Switch ON the PC and set the switch SW1 in down position (Serial Mode) of

Micro- 2407 DSP Trainer, then press Reset switch.

7. Select the “BLDC Motor Controller” icon in the Desktop.

8. To open port, Select “File” and click “OPEN PORT” as shown below.

9. On Port open the window asks for Port No, Baud Rate, etc., as shown below.

10. In the displayed window, select the connected port (COM 1, 2, 3, or 4) and other

settings are default, port is open for communication

11. Now select the “Motor Controller –> BLDC” and select the desired controller

“OPEN LOOP” or “CLOSED LOOP”.

Digital Signal Processing Lab Manual

74

Prepared By: Mohd.Abdul Muqeet

Open Loop Control

*Select the OPEN LOOP controller option.

12. From the Graphical display, click “DOWNLOAD” button.

 13. Reset the 2407 kit once & select the “HSBLDCOL.ASC” File from the respective

path.

14. After selecting the file, “DOWNLOADED SUCCESSFULLY” appears in the

screen, click “EXECUTE” to execute the downloaded file.

15. Now check the PWM output & Hall sensor output, which are all terminated in the

power module.

16. To change the speed of the motor, use the up/down switch in the 2407 kit.

17. To run the motor in Forward/Reverse direction, or to Run/ Brake, use the options

given in the software.

18. The motor speed is shown in the PC with graphical representations.

19. The Phase current, DC current waveforms are plotted in the plotting section.

Closed Loop Control

*Select the CLOSED LOOP controller option.

20. From the Graphical display, click “DOWNLOAD” & reset the 2407 kit once &

select the “HSBLDCCL.ASC” File from the respective path

21. After selecting the file, “DOWNLOADED SUCCESSFULLY” message appears

in the screen. Now, click “EXECUTE” to execute the downloaded file.

22. Now check the PWM output & Hall sensor output, which are all terminated in the

power module.

23. To change the speed of the motor, use the up/down switch in the 2407 kit or click

“ENTER SPEED” option in the software, then enter the required speed.

24. To run the motor in Forward/Reverse direction, or to Run/ Brake, use the options

given in the software.

25. The set speed & motor speed are shown in the PC with graphical representations.

26. The Phase current, DC link current waveforms are plotted in the plotting section.

27. To measure the load current of the motor, Externally connect one AC ammeter in

series with any one phase.(ref connection diagram)

Digital Signal Processing Lab Manual

75

Prepared By: Mohd.Abdul Muqeet

Results: Use the following Table for closed Loop mode of operation.

Sr.

No

Input

Voltage

inV

Measu

red

Output

voltage

From

Power

Modul

e

oV

onT off
T T

on off
T T

Calculted

Output

Voltag

Set

Spee

d

(rpm

)

setN

Rate

d

Spee

d

(rpm

)

ratedN

p
K

IK

1

2

3

4

5

Discussions on results:

Thus the real time interfacing of the Induction motor with Micro-2407 trainer kit is

experimented and speed control of BLDC motor in open and closed loop mode is

experimented using IPM and Micro-2407.

From the results students will be able to

1) Discuss the open loop mode operation for calculating the efficiency of the

motor in load variation.

2) Discuss the closed loop mode operation for calculating the efficiency of the

motor in load variation.

3) Discuss the effect of Kp value on the offset error in speed.

4) Discuss the effect of Ki value on the offset error in speed.

Digital Signal Processing Lab Manual

76

Prepared By: Mohd.Abdul Muqeet

Introduction to TMS320C6713 DSK[Courtesy: Texas Instrument]

DSP Starter Kit (DSK) for the TMS320C6713 (Courtesy Spectrum Digital)

The C6713™ DSK builds on TI's industry-leading line of low cost, easy-to-use DSP

Starter Kit (DSK) development boards. The high-performance board features the

TMS320C6713 floating-point DSP. Capable of performing 1350 million floating-

point operations per second (MFLOPS), the C6713 DSP makes the C6713 DSK the

most powerful DSK development board.

The DSK is USB port interfaced platform that allows to efficiently develop and test

applications for the C6713. The DSK consists of a C6713-based printed circuit board

that will serve as a hardware reference design for TI’s customers’ products. With

extensive host PC and target DSP software support, including bundled TI tools, the

DSK provides ease-of-use and capabilities that are attractive to DSP engineers.

The following checklist details items that are shipped with the C6711 DSK kit.

� TMS320C6713 DSK TMS320C6713 DSK development board

� Other hardware External 5VDC power supply

IEEE 1284 compliant male-to-female cable

� CD-ROM Code Composer Studio DSK tools

The C6713 DSK has a TMS320C6713 DSP onboard that allows full-speed

verification of code with Code Composer Studio. The C6713 DSK provides:

• A USB Interface

• SDRAM and ROM

• An analog interface circuit for Data conversion (AIC)

Digital Signal Processing Lab Manual

77

Prepared By: Mohd.Abdul Muqeet

• An I/O port

• Embedded JTAG emulation support

Connectors on the C6713 DSK provide DSP external memory interface (EMIF) and

peripheral signals that enable its functionality to be expanded with custom or third

party daughter boards.

The DSK provides a C6713 hardware reference design that can assist you in the

development of your own C6713-based products. In addition to providing a reference

for interfacing the DSP to various types of memories and peripherals, the design also

addresses power, clock, JTAG, and parallel peripheral interfaces.

The C6713 DSK includes a stereo codec. This analog interface circuit (AIC) has the

following characteristics:

High-Performance Stereo Codec

• 90-dB SNR Multibit Sigma-Delta ADC (A-weighted at 48 kHz)

• 100-dB SNR Multibit Sigma-Delta DAC (A-weighted at 48 kHz)

• 1.42 V – 3.6 V Core Digital Supply: Compatible With TI C54x DSP

Core Voltages

• 2.7 V – 3.6 V Buffer and Analog Supply: Compatible Both TI C54x

DSP Buffer Voltages

• 8-kHz – 96-kHz Sampling-Frequency Support

Software Control Via TI McBSP-Compatible Multiprotocol Serial Port

• I 2 C-Compatible and SPI-Compatible Serial-Port Protocols

• Glueless Interface to TI McBSPs

Audio-Data Input/Output Via TI McBSP-Compatible Programmable Audio Interface

• I 2 S-Compatible Interface Requiring Only One McBSP for both ADC

and DAC

• Standard I 2 S, MSB, or LSB Justified-Data Transfers

• 16/20/24/32-Bit Word Lengths

The C6713DSK has the following features:

The 6713 DSK is a low-cost standalone development platform that enables customers

to evaluate and develop applications for the TI C67XX DSP family. The DSK also

serves as a hardware reference design for the TMS320C6713 DSP. Schematics, logic

equations and application notes are available to ease hardware development and

reduce time to market.

The DSK uses the 32-bit EMIF for the SDRAM (CE0) and daughtercard expansion

interface (CE2 and CE3). The Flash is attached to CE1 of the EMIF in 8-bit mode.

An on-board AIC23 codec allows the DSP to transmit and receive analog signals.

McBSP0 is used for the codec control interface and McBSP1 is used for data. Analog

audio I/O is done through four 3.5mm audio jacks that correspond to microphone

input, line input, line output and headphone output. The codec can select the

microphone or the line input as the active input. The analog output is driven to both

Digital Signal Processing Lab Manual

78

Prepared By: Mohd.Abdul Muqeet

the line out (fixed gain) and headphone (adjustable gain) connectors. McBSP1 can be

re-routed to the expansion connectors in software.

A programmable logic device called a CPLD is used to implement glue logic that ties

the board components together. The CPLD has a register based user interface that lets

the user configure the board by reading and writing to the CPLD registers. The

registers reside at the midpoint of CE1.

The DSK includes 4 LEDs and 4 DIP switches as a simple way to provide the user

with interactive feedback. Both are accessed by reading and writing to the CPLD

registers.

An included 5V external power supply is used to power the board. On-board voltage

regulators provide the 1.26V DSP core voltage, 3.3V digital and 3.3V analog

voltages. A voltage supervisor monitors the internally generated voltage, and will

hold the board in reset until the supplies are within operating specifications and the

reset button is released. If desired, JP1 and JP2 can be used as power test points for

the core and I/O power supplies.

Code Composer communicates with the DSK through an embedded JTAG emulator

with a USB host interface. The DSK can also be used with an external emulator

through the external JTAG connector.

TMS320C6713 DSP Features

� Highest-Performance Floating-Point Digital Signal Processor (DSP):

� Eight 32-Bit Instructions/Cycle

� 32/64-Bit Data Word

� 300-, 225-, 200-MHz (GDP), and 225-, 200-, 167-MHz (PYP) Clock Rates

� 3.3-, 4.4-, 5-, 6-Instruction Cycle Times

� 2400/1800, 1800/1350, 1600/1200, and 1336/1000 MIPS /MFLOPS

� Rich Peripheral Set, Optimized for Audio

� Highly Optimized C/C++ Compiler

� Extended Temperature Devices Available

� Advanced Very Long Instruction Word (VLIW) TMS320C67x™ DSP Core

� Eight Independent Functional Units:

� Two ALUs (Fixed-Point)

� Four ALUs (Floating- and Fixed-Point)

� Two Multipliers (Floating- and Fixed-Point)

� Load-Store Architecture With 32 32-Bit General-Purpose Registers

� Instruction Packing Reduces Code Size

� All Instructions Conditional

� Instruction Set Features

� Native Instructions for IEEE 754

� Single- and Double-Precision

� Byte-Addressable (8-, 16-, 32-Bit Data)

� 8-Bit Overflow Protection

� Saturation; Bit-Field Extract, Set, Clear; Bit-Counting; Normalization

� L1/L2 Memory Architecture

Digital Signal Processing

Prepared By: Mohd.Abdul Muqeet

� 4K-Byte L1P Program Cache (Direct

� 4K-Byte L1D Data Cache (2

� 256K-Byte L2 Memory Total: 64K

and 192K-Byte Additional L2 Mapped RAM

� Device Configuration

� Boot Mode: HPI, 8

� Endianness: Little Endian, Big Endian

� 32-Bit External Memory Interface (EMIF)

� Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

� 512M-Byte Total Addressable External Memory Space

� Enhanced Direct-Memory

� 16-Bit Host-Port Interface (HPI)

� Two Multichannel Audio Serial Ports (McASPs)

� Two Independent Clock Zones Each (1 TX and 1 RX)

� Eight Serial Data Pins Per Port:

 Individually Assignable to any of the C

� Each Clock Zone Includes:

� Programmable Clock Generator

� Programmable Frame Sync Generator

� TDM Streams From 2

� Support for Slot Size:

 8, 12, 16, 20, 24, 28, 32 Bits

� Data Formatter for Bit Manipulation

� Wide Variety of I2S and Similar Bit Stream Formats

� Integrated Digital Audio Interface Transmitter (DIT) Supports:

� S/PDIF, IEC60958

� Up to 16 transmit pins

� Enhanced Channel Status/User Data

� Extensive Error Checking and Recovery

� Two Inter-Integrated Circuit Bus (I2C Bus™) Multi

� Two Multichannel Buffered Serial Ports:

� Serial-Peripheral-Interface (SPI)

� High-Speed TDM Interface

� AC97 Interface

� Two 32-Bit General-Purpose Timers

� Dedicated GPIO Module With

� Flexible Phase-Locked

� IEEE-1149.1 (JTAG

� Package Options:

� 208-Pin PowerPAD™ Plastic (Low

� 272-BGA Packages (GDP and

� 0.13-µm/6-Level Copper Metal Process

� CMOS Technology

� 3.3-V I/Os, 1.2-V Internal (GDP & PYP)

� 3.3-V I/Os, 1.4-V Internal (GDP)(300 MHz only)

Prepared By: Mohd.Abdul Muqeet

Byte L1P Program Cache (Direct-Mapped)

Byte L1D Data Cache (2-Way)

Byte L2 Memory Total: 64K-Byte L2 Unified Cache/Mapped RAM,

Byte Additional L2 Mapped RAM

Boot Mode: HPI, 8-, 16-, 32-Bit ROM Boot

Endianness: Little Endian, Big Endian

Bit External Memory Interface (EMIF)

Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

Byte Total Addressable External Memory Space

Memory-Access (EDMA) Controller (16 Independent Channels)

Port Interface (HPI)

Two Multichannel Audio Serial Ports (McASPs)

Two Independent Clock Zones Each (1 TX and 1 RX)

Eight Serial Data Pins Per Port:

Individually Assignable to any of the Clock Zones

Each Clock Zone Includes:

Programmable Clock Generator

Programmable Frame Sync Generator

TDM Streams From 2-32 Time Slots

Support for Slot Size:

8, 12, 16, 20, 24, 28, 32 Bits

Data Formatter for Bit Manipulation

Wide Variety of I2S and Similar Bit Stream Formats

Integrated Digital Audio Interface Transmitter (DIT) Supports:

S/PDIF, IEC60958-1, AES-3, CP-430 Formats

Up to 16 transmit pins

Enhanced Channel Status/User Data

Extensive Error Checking and Recovery

Integrated Circuit Bus (I2C Bus™) Multi-Master and Slave Interfaces

Two Multichannel Buffered Serial Ports:

Interface (SPI)

Speed TDM Interface

Purpose Timers

Dedicated GPIO Module With 16 pins (External Interrupt Capable)

Locked-Loop (PLL) Based Clock Generator Module

) Boundary-Scan-Compatible

Pin PowerPAD™ Plastic (Low-Profile) Quad Flatpack (PYP)

BGA Packages (GDP and ZDP)

Level Copper Metal Process

CMOS Technology

V Internal (GDP & PYP)

V Internal (GDP)(300 MHz only)

Lab Manual

79

Byte L2 Unified Cache/Mapped RAM,

Glueless Interface to SRAM, EPROM, Flash, SBSRAM, and SDRAM

ccess (EDMA) Controller (16 Independent Channels)

Integrated Digital Audio Interface Transmitter (DIT) Supports:

Master and Slave Interfaces

16 pins (External Interrupt Capable)

Loop (PLL) Based Clock Generator Module

Profile) Quad Flatpack (PYP)

Digital Signal Processing Lab Manual

80

Prepared By: Mohd.Abdul Muqeet

TMS320C6713 DSK Overview Block Diagram [Courtesy: Texas Instrument]

DSK 6713 Peripheral Description [Courtesy dsprelated.com]

Digital Signal Processing Lab Manual

81

Prepared By: Mohd.Abdul Muqeet

Experiment -13

Aim: To verify Linear Convolution using TMS320C6713 DSK

Equipments Required: PC, TMS320C6713 DSK, Code composer Studiov3.0

Theory: These operations can be represented by a Mathematical Expression as

follows:

[] []. []
k

y n x k h n k
∞

=−∞

= −∑

x[]= Input signal Samples

 h[]= Impulse response co-efficient.

 y[]= Convolution output.

 n = No. of Input samples

 h = No. of Impulse response co-efficient.

Algorithm:

Algorithm to implement ‘C’ program for Convolution:

Eg: x[n] = {1, 2, 3, 4}

 h[k] = {1, 2, 3, 4}

Where: n=4, k=4. ;Values of n & k should be a multiple of 4.

 If n & k are not multiples of 4, pad with zero’s to make

 multiples of 4

 r= n+k-1 ; Size of output sequence.

 = 4+4-1

 = 7.
r= 0 1 2 3 4 5 6
n= 0 x[0]h[0] x[0]h[1] x[0]h[2] x[0]h[3]

 1 x[1]h[0] x[1]h[1] x[1]h[2] x[1]h[3]

 2 x[2]h[0] x[2]h[1] x[2]h[2] x[2]h[3]

 3 x[3]h[0] x[3]h[1] x[3]h[2] x[3]h[3]

Output: y[n] = { 1, 4, 10, 20, 25, 24, 16}.

Procedure:

1) Open Code Composer Studio; make sure the DSP kit is turned on.

2) Start a new project using ‘Project-new ‘ pull down menu, save it in a separate

directory(c:\ti\myprojects) with name lconv.pjt.

3) Add the source files conv.c to the project using ‘Project�add files to project’

pull down menu.

4) Add the linker command file hello.cmd .

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

5) Add the run time support library file rts6700.lib

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

6) Compile the program using the ‘Project-compile’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

Digital Signal Processing Lab Manual

82

Prepared By: Mohd.Abdul Muqeet

7) Build the program using the ‘Project-Build’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

8) Load the program (lconv.out) in program memory of DSP chip using the

 ‘File-load program’ pull down menu.

9) To View output graphically

Select view � graph � time and frequency.

Program:

/* program to implement linear convolution */

#include<stdio.h>

#define LENGHT1 6 /*Lenght of i/p samples sequence*/

#define LENGHT2 4 /*Lenght of impulse response Co-

efficients */

int x[2*LENGHT1-1]={1,2,3,4,5,6,0,0,0,0,0}; /*Input

Signal Samples*/

int h[2*LENGHT1-1]={1,2,3,4,0,0,0,0,0,0,0}; /*Impulse

Response Co-efficients*/

int y[LENGHT1+LENGHT2-1];

main()

{

 int i=0,j;

 for(i=0;i<(LENGHT1+LENGHT2-1);i++)

 {

 y[i]=0;

 for(j=0;j<=i;j++)

 y[i]+=x[j]*h[i-j];

 }

 for(i=0;i<(LENGHT1+LENGHT2-1);i++)

 printf("%d\n",y[i]);

}

Results:

Thus, the Linear Convolution of two given discrete sequence has been performed. The

input sequences are given in the program and the output will be displayed in the CCS

software.

Input x[n] = {1, 2, 3, 4}

 h[n] = {1, 2, 3, 4}

Output: y[n] = { 1, 4, 10, 20, 25, 24, 16}.

Now configure the Graphical window as shown below

Digital Signal Processing Lab Manual

83

Prepared By: Mohd.Abdul Muqeet

Discussions on results:

Thus we have verified the Linear Convolution in Code composer studio environment

by writing a C program.

From the results students will be able to

1) Discuss the steps required to interface TMS320C6713 Kit with Code

composer studio environment.

2) Discuss the changes in the program to get the input sequences from user.

3) Discuss the steps required in graphical property dialog of the Code

composer studio for graphical visualization of linear convolution output

Digital Signal Processing Lab Manual

84

Prepared By: Mohd.Abdul Muqeet

Experiment -14

Aim: Generation of Sine wave and square wave using TMS320C6713 DSK and Code

Composer Studio.

Equipments Required: PC, TMS320C6713 DSK, Code composer Studiov3.0

Theory:

Sinusoidal Wave: The sine wave or sinusoidal wave is a mathematical curve that

describes smooth repetitive oscillations. It can be represented in mathematical form as

() sin ()y t A t tω φ= +
 Where

A=Amplitude in V.

ω=angular frequency

ϕ=Phase in radins.

Square Wave: The square wave is a non sinusoidal periodic wave form which is

represented as infinite summation of sinusoidal waves in which the amplitude

alternates at a steady frequency between fixed minimum and maximum values with

the same duration at maximum and minimum.

Algorithm:

1) Define frequency in C program.

2) Generate the signals using corresponding general formula.

3) Plot the graph in Code Composer Studio.

Procedure for Sinusoidal wave form generation

1) Open Code Composer Studio; make sure the DSP kit is turned on.

2) Start a new project using ‘Project-new ‘ pull down menu, save it in a separate

directory(c:\ti\myprojects) with name lconv.pjt.

3) Add the source files sinewave.c to the project using ‘Project�add files to

project’ pull down menu.

4) Add the linker command file hello.cmd .

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

5) Add the run time support library file rts6700.lib

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

6) Compile the program using the ‘Project-compile’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

7) Build the program using the ‘Project-Build’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

8) Load the program(sinewave.out) in program memory of DSP chip using the

 ‘File-load program’ pull down menu.

9) To View output graphically

Select view � graph � time and frequency.

Digital Signal Processing Lab Manual

85

Prepared By: Mohd.Abdul Muqeet

Program:

/* program for sinewave generation */

#include<stdio.h>

#include<math.h>

#define freq 400

 float m[128];

main()

{

 int n=0;

 for(n=0;n<127;n++)

 {

 m[n]=sin(2*3.14*freq*n/24000)

 printf(“%f”,m[n]);

 }

}

Procedure for Square waveform generation

1) Open Code Composer Studio; make sure the DSP kit is turned on.

2) Start a new project using ‘Project-new ‘ pull down menu, save it in a separate

directory(c:\ti\myprojects) with name lconv.pjt.

3) Add the source files squarewave.c to the project using ‘Project�add files to

project’ pull down menu.

4) Add the linker command file hello.cmd .

(Path: c:\ti\tutorial\dsk6713\hello1\hello.cmd)

5) Add the run time support library file rts6700.lib

(Path: c:\ti\c6000\cgtools\lib\rts6700.lib)

6) Compile the program using the ‘Project-compile’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

7) Build the program using the ‘Project-Build’ pull down menu or by

 clicking the shortcut icon on the left side of program window.

8) Load the program(squarewave.out) in program memory of DSP chip using the

 ‘File-load program’ pull down menu.

9) To View output graphically

Select view � graph � time and frequency.

Program for Square wave Generation

/* program for Squarewave generation */

#include<stdio.h>

#include<math.h>

#define freq 500

 float m[81];

main()

{

Digital Signal Processing Lab Manual

86

Prepared By: Mohd.Abdul Muqeet

 int n=0;

 for(n=0;n<21;n++)

 {

 m[n]=5.0

}

 for(n=21;n<41;n++)

 {

 m[n]=-5.0

}

 for(n=41;n<61;n++)

 {

 m[n]=5.0

}

for(n=61;n<81;n++)

 {

 m[n]=-5.0

}

}

Results:

Thus, the waveform generation on sine wave and square wave is performed in Code

composer environment by using a C program. Output will be displayed in the

graphical window of CCS software.

Now configure the graphical window as shown below for Sine wave generation .the

same procedure can be followed for square wave generation.

Digital Signal Processing Lab Manual

87

Prepared By: Mohd.Abdul Muqeet

Plot of sine waveform

Plot of Square wave form

Discussion on Results:

Thus we have performed the waveform generation in Code composer studio

environment by writing a C program.

From the results the student will be able to

1) Discuss the steps required to interface TMS320C6713 Kit with Code

composer studio environment.

2) Discuss the changes in the program to get the input sequences from user.

3) Discuss the steps required in graphical property dialog of the Code

composer studio for graphical visualization of the sine wave and square

wave output.

Digital Signal Processing Lab Manual

88

Prepared By: Mohd.Abdul Muqeet

Experiment -15

Aim: Generating the Responses of Low Pass and High Pass filters using DSP Trainer

Kit (TMS320C6713)

Equipments Required: PC Host (PC) with windows (95/98/Me/XP/NT/2000),

TMS320C6713 DSP Starter Kit (DSK).Oscilloscope and Function generator, Code

Composer Studio v3.0

Algorithm:
We need to realize the Butter worth band pass IIR filter by implementing the

difference equation y[n] = b0x[n] + b1x[n-1]+b2x[n-2]-a1y[n-1]-a2y[n-2]

where b0 – b2, a0-a2 are feed forward and feedback word coefficients

respectively [Assume 2nd order of filter].These coefficients are calculated

using MATLAB.A direct form I implementation approach is taken.

1) Initialize the McBSP, the DSP board and the on board codec.

“Kindly refer the Topic Configuration of 6713Codec using BSL”

2) Initialize the discrete time system, that is , specify the initial conditions.

Generally zero initial conditions are assumed.

3) Take sampled data from codec while input is fed to DSP kit from the

signal generator. Since Codec is stereo, take average of input data read

from left and right channel. Store sampled data at a memory location.

4) Perform filter operation using above said difference equation and store

filter Output at a memory location.

5) Output the value to codec (left channel and right channel) and view the

output at Oscilloscope.

6) Step 6 - Go to step 3.

Procedure for Real time Programs:

1. Connect CRO to the Socket Provided for LINE OUT.

2. Connect a Signal Generator to the LINE IN Socket.

3. Switch on the Signal Generator with a sine wave of frequency 500 Hz. and Vp-

p=1.5v

4. Now Switch on the DSK and Bring Up Code Composer Studio on the PC.

5. Create a new project with name codec.pjt.

6. From the File Menu � new � DSP/BIOS Configuration �select

 “dsk6713.cdb” and save it as “xyz.cdb”

Digital Signal Processing Lab Manual

89

Prepared By: Mohd.Abdul Muqeet

7. Add “xyz.cdb” to the current project.

8. Add the given “codec.c” file to the current project which has the main function

and calls all the other necessary routines.

9. Add the library file “dsk6713bsl.lib” to the current project

 Path � “C:\CCStudio\C6000\dsk6713\lib\dsk6713bsl.lib”

10. Copy files “dsk6713.h” and “dsk6713_aic23.h” from

C:\CCStudio\C6000\dsk6713\include and paste it in current project.

11. Build, Load and Run the program.

12. You can notice the input signal of 500 Hz. appearing on the CRO verifying the

codec configuration.

13. You can also pass an audio input and hear the output signal through the speakers.

14. You can also vary the sampling frequency using the DSK6713_AIC23_setFreq

Function in the “codec.c” file and repeat the above steps.

Procedure to execute IIR Filter Program

1) Switch on the DSP board.

2) Open the Code Composer Studio.

3) Create a new project

Project � New (File Name. pjt , Eg: IIR.pjt)

4) Initialize on board codec.

5) Add the given above ‘C’ source file to the current project (remove codec.c

source file from the project if you have already added).

6) Connect the speaker jack to the input of the CRO.

7) Build the program.

8) Load the generated object file (*.out) on to Target board.

9) Run the program

10) Observe the waveform that appears on the CRO screen.

11) Vary the frequency on function generator to see the response of filter.

AIC23 Codec Connections

[Courtesy Texas Instruments]

Digital Signal Processing Lab Manual

90

Prepared By: Mohd.Abdul Muqeet

Program:

#include "xyzcfg.h"

#include "dsk6713.h"

#include "dsk6713_aic23.h"

const signed int filter_Coeff[] =

{

 //12730,-12730,12730,2767,-18324,21137 /*HP 2500 */

 //312,312,312,32767,-27943,24367 /*LP 800 */

 //1455,1455,1455,32767,-23140,21735 /*LP 2500 */

 //9268,-9268,9268,32767,-7395,18367 /*HP 4000*/

 7215,-7215,7215,32767,5039,6171, /*HP 7000*/

} ;

/* Codec configuration settings */

DSK6713_AIC23_Config config = { \

 0x0017, /* 0 DSK6713_AIC23_LEFTINVOL Left line input channel volume */

\
 0x0017, /* 1 DSK6713_AIC23_RIGHTINVOL Right line input channel volume

*/\

 0x00d8, /* 2 DSK6713_AIC23_LEFTHPVOL Left channel headphone volume */

\

 0x00d8, /* 3 DSK6713_AIC23_RIGHTHPVOL Right channel headphone volume */

\

 0x0011, /* 4 DSK6713_AIC23_ANAPATH Analog audio path control */

\

 0x0000, /* 5 DSK6713_AIC23_DIGPATH Digital audio path control */

\

 0x0000, /* 6 DSK6713_AIC23_POWERDOWN Power down control */

\

 0x0043, /* 7 DSK6713_AIC23_DIGIF Digital audio interface format */

\

 0x0081, /* 8 DSK6713_AIC23_SAMPLERATE Sample rate control */

\

 0x0001 /* 9 DSK6713_AIC23_DIGACT Digital interface activation */

\

};

/*

 * main() - Main code routine, initializes BSL and generates tone

 */

void main()

{
 DSK6713_AIC23_CodecHandle hCodec;

 int l_input, r_input, l_output, r_output;

 /* Initialize the board support library, must be called first */

 DSK6713_init();

 /* Start the codec */

 hCodec = DSK6713_AIC23_openCodec(0, &config);

 DSK6713_AIC23_setFreq(hCodec, 3);

 while(1)

 { /* Read a sample to the left channel */

 while (!DSK6713_AIC23_read(hCodec, &l_input));

 /* Read a sample to the right channel */

 while (!DSK6713_AIC23_read(hCodec, &r_input));

 l_output=IIR_FILTER(&filter_Coeff ,l_input);

 r_output=l_output;

 /* Send a sample to the left channel */

Digital Signal Processing Lab Manual

91

Prepared By: Mohd.Abdul Muqeet

 while (!DSK6713_AIC23_write(hCodec, l_output));

 /* Send a sample to the right channel */

 while (!DSK6713_AIC23_write(hCodec, r_output));

 }

 /* Close the codec */

 DSK6713_AIC23_closeCodec(hCodec);

}

signed int IIR_FILTER(const signed int * h, signed int x1)

{

 static signed int x[6] = { 0, 0, 0, 0, 0, 0 }; /* x(n), x(n-1), x(n-

2). Must be static */

 static signed int y[6] = { 0, 0, 0, 0, 0, 0 }; /* y(n), y(n-1), y(n-

2). Must be static */

 int temp=0;

 temp = (short int)x1; /* Copy input to temp */

 x[0] = (signed int) temp; /* Copy input to x[stages][0] */

 temp = ((int)h[0] * x[0]) ; /* B0 * x(n) */

 temp += ((int)h[1] * x[1]); /* B1/2 * x(n-1) */
 temp += ((int)h[1] * x[1]); /* B1/2 * x(n-1) */

 temp += ((int)h[2] * x[2]); /* B2 * x(n-2) */

 temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-1) */

 temp -= ((int)h[4] * y[1]); /* A1/2 * y(n-1) */

 temp -= ((int)h[5] * y[2]); /* A2 * y(n-2) */

 /* Divide temp by coefficients[A0] */

 temp >>= 15;

 if (temp > 32767)

 {

 temp = 32767;

 }

 else if (temp < -32767)

 {

 temp = -32767;

 }

 y[0] = temp ;

 /* Shuffle values along one place for next time */

 y[2] = y[1]; /* y(n-2) = y(n-1) */
 y[1] = y[0]; /* y(n-1) = y(n) */

 x[2] = x[1]; /* x(n-2) = x(n-1) */

 x[1] = x[0]; /* x(n-1) = x(n) */

 /* temp is used as input next time through */

 return (temp<<2);

}

Results:

Thus the result can be observer on the CRO for various frequencies.

Digital Signal Processing Lab Manual

92

Prepared By: Mohd.Abdul Muqeet

Discussions on results:

The designing of IIR Low pass and High Pass Filters requires initialization of BSL

codec.

From the results students will be able to

1) Discuss the real time interfacing of the TMS320C6713 Kit by using the

full functionality of the board support library files and AIC23 Codec.

2) Discuss the effect of changing the value of coefficients for filters.

3) Discuss the steps required to do the connection of CRO and function

generator to TMS320C6713 Kit.

Digital Signal Processing Lab Manual

93

Prepared By: Mohd.Abdul Muqeet

References

1. A.V Oppenheim,R.W. Schafer, “Digital Signal Processing”, Prentice Hall

Inc.1975.

2. John Proakis, Dimitris G Manolakis, “Digital Signal Processing Principles”,

Algorithms and Application”, PHI, 3rd Edition (1996).

3. S.K. Mitra, “Digital signal processing-A Computer based approach”, Tata

McGraw-Hill, 3rd Edition (2004).

4. S. Salivahana, A.Vallavaraj, Gnanapriya, “Digital Signal Processing”,

McGraw-Hill, 2
nd

 Edition (2000).

5. TMS320C6713 DSK with CCSv3.1 User Manual, Starcom Information

Technology Ltd.

